Preparation of antibodies directed to the Babesia ovata- or Theileria sergenti-parasitized erythrocytes. (1/385)

To investigate the surface antigens of the bovine red blood cells (RBCs) parasitized by Babesia ovata or Theileria sergenti, attempts were made to produce monoclonal antibodies (mAbs) with BALB/c mice. Comparable numbers of hybridomas producing anti-piroplasm mAbs, as well as anti-bovine RBC mAbs, were obtained from the mice immunized with B. ovata- or T. sergenti-PRBCs. However, mAbs directed to the surface of parasitized RBCs (PRBCs) were obtained only from the mice immunized with B. ovata-PRBCs, but not from those immunized with T. sergenti-PRBCs. When serum samples from the immunized mice and the infected cattle were examined, antibodies recognizing B. ovata-PRBC surface were detected in the sera against B. ovata, but analogous antibodies were undetectable in the sera against T. sergenti, despite that the sera showed substantial antibody titers to T. sergenti piroplasms. The results suggest that significant antigenic modifications occur on the surface of B. ovata-PRBCs, but not on the surface of T. sergenti-PRBCs.  (+info)

Detection of enzootic babesiosis in baboons (Papio cynocephalus) and phylogenetic evidence supporting synonymy of the genera Entopolypoides and Babesia. (2/385)

Blood smear evaluation of two baboons (Papio cynocephalus) experiencing acute hemolytic crises following experimental stem cell transplantation revealed numerous intraerythrocytic organisms typical of the genus Babesia. Both animals had received whole-blood transfusions from two baboon donors, one of which was subsequently found to display rare trophozoites of Entopolypoides macaci. An investigation was then undertaken to determine the prevalence of hematozoa in baboons held in our primate colony and to determine the relationship, if any, between the involved species. Analysis of thick and thin blood films from 65 healthy baboons (23 originating from our breeding facility, 26 originating from an out-of-state breeding facility, and 16 imported from Africa) for hematozoa revealed rare E. macaci parasites in 31%, with respective prevalences of 39, 35, and 12%. Phylogenetic analysis of nuclear small-subunit rRNA gene sequences amplified from peripheral blood of a baboon chronically infected with E. macaci demonstrated this parasite to be most closely related to Babesia microti (97.9% sequence similarity); sera from infected animals did not react in indirect fluorescent-antibody tests with Babesia microti antigen, however, suggesting that they represent different species. These results support an emerging view that the genus Entopolypoides Mayer 1933 is synonymous with that of the genus Babesia Starcovici 1893 and that the morphological variation noted among intracellular forms is a function of alteration in host immune status. The presence of an underrecognized, but highly enzootic, Babesia sp. in baboons may result in substantial, unanticipated impact on research programs. The similarity of this parasite to the known human pathogen B. microti may also pose risks to humans undergoing xenotransplantation, mandating effective screening of donor animals.  (+info)

Simultaneous detection of bovine Theileria and Babesia species by reverse line blot hybridization. (3/385)

A reverse line blot (RLB) assay was developed for the identification of cattle carrying different species of Theileria and Babesia simultaneously. We included Theileria annulata, T. parva, T. mutans, T. taurotragi, and T. velifera in the assay, as well as parasites belonging to the T. sergenti-T. buffeli-T. orientalis group. The Babesia species included were Babesia bovis, B. bigemina, and B. divergens. The assay employs one set of primers for specific amplification of the rRNA gene V4 hypervariable regions of all Theileria and Babesia species. PCR products obtained from blood samples were hybridized to a membrane onto which nine species-specific oligonucleotides were covalently linked. Cross-reactions were not observed between any of the tested species. No DNA sequences from Bos taurus or other hemoparasites (Trypanosoma species, Cowdria ruminantium, Anaplasma marginale, and Ehrlichia species) were amplified. The sensitivity of the assay was determined at 0.000001% parasitemia, enabling detection of the carrier state of most parasites. Mixed DNAs from five different parasites were correctly identified. Moreover, blood samples from cattle experimentally infected with two different parasites reacted only with the corresponding species-specific oligonucleotides. Finally, RLB was used to screen blood samples collected from carrier cattle in two regions of Spain. T. annulata, T. orientalis, and B. bigemina were identified in these samples. In conclusion, the RLB is a versatile technique for simultaneous detection of all bovine tick-borne protozoan parasites. We recommend its use for integrated epidemiological monitoring of tick-borne disease, since RLB can also be used for screening ticks and can easily be expanded to include additional hemoparasite species.  (+info)

Southern extension of the range of human babesiosis in the eastern United States. (4/385)

We sought evidence of babesiosis in three residents of New Jersey who were suspected of local acquisition of Babesia microti infection. We tested serial blood samples from these residents for B. microti antibodies and amplifiable DNA by using immunofluorescent antibody and PCR techniques. All three residents experienced symptoms suggestive of acute babesiosis. The sera of each of the patients reacted against babesial antigen at a titer fourfold or higher in sequentially collected blood samples. PCR-amplifiable DNA, characteristic of B. microti, was detected in their blood. These data suggest that human B. microti infections were acquired recently in New Jersey, extending the range of this piroplasmosis in the northeastern United States.  (+info)

Detection of equine antibodies to babesia caballi by recombinant B. caballi rhoptry-associated protein 1 in a competitive-inhibition enzyme-linked immunosorbent assay. (5/385)

A competitive-inhibition enzyme-linked immunosorbent assay (cELISA) was developed for detection of equine antibodies specific for Babesia caballi. The assay used recombinant B. caballi rhoptry-associated protein 1 (RAP-1) and monoclonal antibody (MAb) 79/17.18.5, which is reactive with a peptide epitope of a native 60-kDa B. caballi antigen. The gene encoding the recombinant antigen was sequenced, and database analysis revealed that the gene product is a rhoptry-associated protein. Cloning and expression of a truncated copy of the gene demonstrated that MAb 79/17.18.5 reacts with the C-terminal repeat region of the protein. The cELISA was used to evaluate 302 equine serum samples previously tested for antibodies to B. caballi by a standardized complement fixation test (CFT). The results of cELISA and CFT were 73% concordant. Seventy-two of the 77 serum samples with discordant results were CFT negative and cELISA positive. Further evaluation of the serum samples with discordant results by indirect immunofluorescence assay (IFA) demonstrated that at a serum dilution of 1:200, 48 of the CFT-negative and cELISA-positive serum samples contained antibodies reactive with B. caballi RAP-1. Four of five CFT-positive and cELISA-negative serum samples contained antibodies reactive with B. caballi when they were tested by IFA. These data indicate that following infection with B. caballi, horses consistently produce antibody to the RAP-1 epitope defined by MAb 79/17.18.5, and when used in the cELISA format, recombinant RAP-1 is a useful antigen for the serologic detection of anti-B. caballi antibodies.  (+info)

Roles of CD4(+) T cells and gamma interferon in protective immunity against Babesia microti infection in mice. (6/385)

Babesia microti produces a self-limiting infection in mice, and recovered mice are resistant to reinfection. In the present study, the role of T cells in protective immunity against challenge infection was examined. BALB/c mice which recovered from primary infection showed strong protective immunity against challenge infection. In contrast, nude mice which failed to control the primary infection and were cured with an antibabesial drug did not show protection against challenge infection. Treatment of immune mice with anti-CD4 monoclonal antibody (MAb) diminished the protective immunity against challenge infection, but treatment with anti-CD8 MAb had no effect on the protection. Transfer of CD4(+) T-cell-depleted spleen cells resulted in higher parasitemia than transfer of CD8(+) T-cell-depleted spleen cells. A high level of gamma interferon (IFN-gamma), which was produced by CD4(+) T cells, was observed for the culture supernatant of spleen cells from immune mice, and treatment of immune mice with anti-IFN-gamma MAb partially reduced the protection. Moreover, no protection against challenge infection was found in IFN-gamma-deficient mice. On the other hand, treatment of immune mice with MAbs against interleukin-2 (IL-2), IL-4, or tumor necrosis factor alpha did not affect protective immunity. These results suggest essential requirements for CD4(+) T cells and IFN-gamma in protective immunity against challenge infection with B. microti.  (+info)

Infection with agents of human granulocytic ehrlichiosis, lyme disease, and babesiosis in wild white-footed mice (Peromyscus leucopus) in Connecticut. (7/385)

White-footed mice, Peromyscus leucopus, were captured in southern Connecticut during 1997 and 1998 to determine the prevalence of infections caused by granulocytic Ehrlichia sp., Borrelia burgdorferi, and Babesia microti. Of the 50 mice captured and recaptured, 25 of 47 (53.2%) and 23 of 48 (47.9%) contained antibodies to the BDS or NCH-1 Ehrlichia strains, respectively, as determined by indirect fluorescent antibody (IFA) staining methods. The majority (83.3%) of 48 mice also contained antibodies to B. burgdorferi, as determined by enzyme-linked immunosorbent assay. Moreover, 20 of 26 (76.9%) contained antibodies to B. microti by IFA staining methods. In nested PCR tests using the 16S rRNA gene, the DNA of the human granulocytic ehrlichiosis (HGE) agent was detected in 17 of 47 mice (36.2%), but only 4 (23.5%) of these 17 mice were PCR positive at each capture. Antibody-positive reactions to granulocytic Ehrlichia sp. organisms were detected in 17 of 23 (73. 9%) of the PCR-positive mice. The sequences from PCR products from nine positive blood samples were identical to the HGE agent. Ehrlichia spp. were cultured from three of five mice captured in April 1998, including one that was PCR positive in April 1997. In addition, 2 of 14 larval Ixodes scapularis pools, which were attached to two PCR-positive mice, contained DNA of the HGE agent. A high percentage of white-footed mice are infected or have been infected naturally by the HGE agent with low-level persistent infection or frequent reinfection in some individual mice. However, the changes noted in the presence of DNA and antibodies in repeated blood and serum samples from individual mice over several months of field collection suggests that infection with granulocytic Ehrlichia is transient in most wild P. leucopus.  (+info)

Cloning and expression of a 48-kilodalton Babesia caballi merozoite rhoptry protein and potential use of the recombinant antigen in an enzyme-linked immunosorbent assay. (8/385)

A cDNA expression library prepared from Babesia caballi merozoite mRNA was screened with a monoclonal antibody BC11D against the rhoptry protein of B. caballi merozoite. A cDNA encoding a 48-kDa protein of B. caballi was cloned and designated BC48. The complete nucleotide sequence of the BC48 gene had 1,828 bp and was shown to contain no intron. Southern blotting analysis indicated that the BC48 gene contained more than two copies in the B. caballi genome. Computer analysis suggested that this sequence contained an open reading frame of 1,374 bp with a coding capacity of approximately 52 kDa. The recombinant protein expressed by the vaccinia virus vector in horse cells had an apparent molecular mass of 48 kDa, which was the same as that of the native B. caballi 48-kDa protein. Moreover, recombinant proteins expressed by the pGEX4T expression vector in Escherichia coli as glutathione S-transferase fusion proteins were used for antigen in an enzyme-linked immunosorbent assay (ELISA). The ELISA was able to differentiate very clearly between B. caballi-infected horse sera and B. equi-infected horse sera or noninfected normal horse sera. These results suggest that this simple and highly sensitive test might be applicable to the detection of B. caballi-infected horses in the field.  (+info)