Nonspecific binding of drugs to human liver microsomes. (17/363)

AIMS: To characterize the nonspecific binding to human liver microsomes of drugs with varying physicochemical characteristics, and to develop a model for the effect of nonspecific binding on the in vitro kinetics of drug metabolism enzymes. METHODS: The extent of nonspecific binding to human liver microsomes of the acidic drugs caffeine, naproxen, tolbutamide and phenytoin, and of the basic drugs amiodarone, amitriptyline and nortriptyline was investigated. These drugs were chosen for study on the basis of their lipophilicity, charge, and extent of ionization at pH 7.4. The fraction of drug unbound in the microsomal mixture, fu(mic), was determined by equilibrium dialysis against 0.1 M phosphate buffer, pH 7.4. The data were fitted to a standard saturable binding model defined by the binding affinity KD, and the maximum binding capacity Bmax. The derived binding parameters, KD and Bmax, were used to simulate the effects of saturable nonspecific binding on in vitro enzyme kinetics. RESULTS: The acidic drugs caffeine, tolbutamide and naproxen did not bind appreciably to the microsomal membrane. Phenytoin, a lipophilic weak acid which is mainly unionized at pH 7. 4, was bound to a small extent (fu(mic) = 0.88) and the binding did not depend on drug concentration over the range used. The three weak bases amiodarone, amitriptyline and nortriptyline all bound extensively to the microsomal membrane. The binding was saturable for nortriptyline and amitriptyline. Bmax and KD values for nortriptyline at 1 mg ml-1 microsomal protein were 382 +/- 54 microM and 147 +/- 44 microM, respectively, and for amitriptyline were 375 +/- 23 microM and 178 +/- 33 microM, respectively. Bmax, but not KD, varied approximately proportionately with the microsome concentration. When KD is much less than the Km for a reaction, the apparent Km based on total drug can be corrected by multiplying by fu(mic). When the substrate concentration used in a kinetic study is similar to or greater than the KD (Km >/= KD), simulations predict complex effects on the reaction kinetics. When expressed in terms of total drug concentrations, sigmoidal reaction velocity vs substrate concentration plots and curved Eadie Hofstee plots are predicted. CONCLUSIONS: Nonspecific drug binding in microsomal incubation mixtures can be qualitatively predicted from the physicochemical characteristics of the drug substrate. The binding of lipophilic weak bases is saturable and can be described by a standard binding model. If the substrate concentrations used for in vitro kinetic studies are in the saturable binding range, complex effects are predicted on the reaction kinetics when expressed in terms of total (added) drug concentration. Sigmoidal reaction curves result which are similar to the Hill plots seen with cooperative substrate binding.  (+info)

Hypersensitivity syndrome caused by amitriptyline administration. (18/363)

Adverse cutaneous manifestations are among the most common side effects associated with psychotropic drugs. Skin reactions due to amitriptyline (a tricyclic antidepressant agent) include rashes and hypersensitivity reactions (for example, urticaria and photosensitivity) as well as hyperpigmentation. Hypersensitivity syndrome is a specific severe idiosyncratic reaction causing skin, liver, joint, and haematological abnormalities, which usually resolve after the discontinuation of the implicated drug. A case of a 24 year old woman who experienced hypersensitivity syndrome three weeks after the initiation of amitriptyline is reported.  (+info)

Effects of antidepressants on weight and on the plasma levels of leptin, TNF-alpha and soluble TNF receptors: A longitudinal study in patients treated with amitriptyline or paroxetine. (19/363)

Leptin, tumor necrosis factor-alpha (TNF-alpha), and soluble TNF receptors are involved in weight regulation. Antipsychotic agents, such as clozapine, induce weight gain and increase circulating levels of these cytokines. To assess whether obesity-inducing antidepressants have a similar effect, we measured plasma cytokine levels in depressive inpatients during the first six weeks of treatment with tricyclic agents (amitriptyline or nortriptyline, n = 12), with paroxetine (n = 10), or without medication (n = 14). There was an increase in the body mass index at week 6 of treatment with the tricyclics, which was preceded by a significant increase in soluble TNF receptor p75 plasma levels. Circulating levels of leptin were not affected. Paroxetine and drug-free treatment did not affect any of these parameters. We conclude that weight gain induced by psychotropic agents may occur without increased circulating levels of leptin. However, activation of the TNF-alpha system might be an early and sensitive marker of ensuing weight gain.  (+info)

Blood concentrations of amitriptyline and its metabolite in rats after acute oral administration of amitriptyline. (20/363)

Amitriptyline (AMT), a tricyclic antidepressant that is a dibenzocycloheptadine derivative, is frequently used. However, the case reports of AMT-related fatalities are increased, nowadays, due to the low levels of toxic and fatal concentration in blood. So, this study was carried out to determine the concentrations of AMT and its demethylated metabolite, nortriptyline (NTR), after acute single oral administration of AMT in rats. Blood samples were collected five times from the ophthalmic venous plexus at 0, 1, 2, 4, and 8 h after acute single oral administration of AMT in toxic doses of 10 (Group I) or 20 mg/kg (Group II), and the concentrations of AMT and NTR and the mean ratios of AMT to NTR (AMT/NTR) in the blood were periodically determined at designated times. The blood concentrations of AMT and NTR were identified and quantitated by gas chromatography with thermionic specific detection and gas chromatography-mass spectrometry after solid-phase extraction with a Clean Screen DAU column. The peak blood concentrations of AMT and NTR in Group I were 0.34 and 0.28 microg/mL, respectively, and those of AMT and NTR in Group II were 0.59 and 0.43 microg/mL, respectively, and were reached at 1 h after single oral administration.  (+info)

Antinociception induced by amitriptyline and imipramine is mediated by alpha2A-adrenoceptors. (21/363)

The involvement of alpha2-adrenoceptors in the antinociception induced by the tricyclic antidepressants amitriptyline and imipramine was investigated in mice by using the hot-plate and abdominal constriction tests. The antinociception produced by amitriptyline (15 mg/kg, i.p.) and imipramine (15 mg/kg, i.p.) was prevented by reserpine (2 mg/kg, i.p.) and yohimbine (3-10 mg/kg, i.p.) but not by naloxone (1 mg/kg, i.p.), atropine (5 mg/kg, i.p.), CGP 35348 (100 mg/kg, i.p.) and prazosin (1 mg/kg, i.p.). On the basis of the above data, it can be postulated that amitriptyline and imipramine exerted their antinociceptive effect by activation of alpha2-adrenoceptors. Administration of the alpha2A-adrenoceptor antagonist BRL 44408 (1 mg/kg, i.p.) prevented amitriptyline and imipramine antinociception, whereas the alpha2B/C-adrenoceptor antagonist ARC 239 (10 mg/kg, i.p.) was ineffective. These data indicate that the enhancement of the pain threshold produced by amitriptyline and imipramine is mediated by activation of alpha2A-adrenoceptors. Neither tricyclic antidepressants nor the antagonists used impaired mouse performance evaluated by the rota-rod and hole-board tests.  (+info)

Comparative N-glucuronidation kinetics of ketotifen and amitriptyline by expressed human UDP-glucuronosyltransferases and liver microsomes. (22/363)

Like other basic amphiphilic drugs, the (S)-enantiomer of the antiallergic drug ketotifen exhibited biphasic kinetics when it was converted to two isomeric quaternary ammonium-linked glucuronides in human liver microsomes. For (R)-ketotifen this applied when incubations were carried out in the absence of a detergent. Two UDP-glucuronosyltransferases (UGTs) present in human liver, UGT1A4 and UGT1A3, were previously shown to catalyze tertiary amine N-glucuronidation when expressed in HK293 cells. Therefore, the conjugation kinetics of (R)- and (S)-ketotifen were investigated with the two expressed proteins. When homogenates of HK293 cells expressing UGT1A4 were incubated without detergent, N-glucuronidation kinetics were monophasic with K(M) values of 59 +/- 5 microM for (R)- and 86 +/- 26 microM for (S)-ketotifen. In experiments with membranes containing expressed UGT1A3, somewhat higher K(M) values were obtained. These values correspond to the high rather than to the low K(M) components of ketotifen glucuronidation in liver microsomes, the latter exhibiting K(M) values around 2 and 1 microM, respectively, with (R)- and (S)-ketotifen. With amitriptyline as the substrate, N-glucuronidation kinetics in the absence of detergent were biphasic in human liver microsomes and monophasic with a high K(M) value in cell homogenates containing UGT1A4. The results suggest that UGT1A4 and UGT1A3 catalyze high-K(M) N-glucuronidation of tertiary amine drugs, whereas the low-K(M) reaction requires either an alternative enzyme or a special conformation of UGT1A4 or UGT1A3 that can be attained in liver microsomes, but not in HK293 cell membranes.  (+info)

Activation of cytochrome P450 gene expression in the rat brain by phenobarbital-like inducers. (23/363)

Oxidative biotransformation, coupled with genetic variability in enzyme expression, has been the focus of hypotheses interrelating environmental and genetic factors in the etiology of central nervous system disease processes. Chemical modulation of cerebral cytochrome P450 (P450) monooxygenase expression character may be an important determinant of in situ metabolism, neuroendocrine homeostasis, and/or central nervous system toxicity resulting from exposure to neuroactive drugs and xenobiotic substances. To examine the capacity of the rat brain to undergo phenobarbital (PB)-mediated induction, we developed reverse transcription-polymerase chain reaction methods and evaluated the effects of several PB-like inducers on P450 and microsomal epoxide hydrolase gene expression. Animals treated i.p. with four daily doses of PB demonstrated markedly induced levels of CYP2B1, CYP2B2, and CYP3A1 mRNA in the striatum and cerebellum. In contrast, 1 or 2 days of PB treatment resulted in unchanged or even slightly decreased levels of CYP2B1 and CYP2B2 in the brain, although the latter treatments produced marked induction of the corresponding genes in the liver. Only slight increases in epoxide hydrolase RNA levels resulted in brains of PB-treated animals. Substantial activation of cerebral CYP2B1, CYP2B2, and CYP3A1 mRNA levels also resulted when animals were treated with the neuroactive drugs diphenylhydantoin and amitryptiline, and with the potential PB-like xenobiotic inducers trans-stilbene oxide and diallyl sulfide, whereas dichlorodiphenyltrichloroethane was less efficacious. Although the time course of the induction response is delayed in brain relative to that required for the liver, these results clearly establish that brain P450s are markedly PB inducible.  (+info)

Pharmacokinetics and metabolism of thioridazine during co-administration of tricyclic antidepressants. (24/363)

1. Because of serious side-effects of thioridazine and tricyclic antidepressants (cardiotoxicity), a possible influence of imipramine and amitriptyline on the pharmacokinetics and metabolism of thioridazine was investigated in a steady state (2-week treatment) in rats. 2. Imipramine and amitriptyline (5 and 10 mg kg(-1) i.p., respectively) elevated 30 and 20 fold, respectively, the concentration of thioridazine (10 mg kg(-1) i.p.) and its metabolites (N-desmethylthioridazine, 2-sulphoxide, 2-sulphone, 5-sulphoxide) in blood plasma. Similar, yet weaker increases in the thioridazine concentration were found in the brain. Moreover, an elevation of thioridazine/metabolite ratios was observed. 3. Imipramine and amitriptyline added to control liver microsomes in vitro inhibited the metabolism of thioridazine via N-demethylation (an increase in K(m)), mono-2-sulphoxidation (an increase in K(m) and a decrease in V(max)) and 5-sulphoxidation (mainly a decrease in V(max)). Amitriptyline was a more potent inhibitor than imipramine of the thioridazine metabolism. 4. The varying concentration ratios of antidepressant/thioridazine in vivo appear to be more important to the final result of the pharmacokinetic interactions than are relative direct inhibitory effects of the antidepressants on thioridazine metabolism observed in vitro. 5. Besides direct inhibition of the thioridazine metabolism, the decreased activity of cytochrome P-450 towards 5-sulphoxidation, produced by chronic joint administration of thioridazine and the antidepressants, seems to be relevant to the observed in vivo interaction. 6. The obtained results may also point to inhibition of another, not yet investigated, metabolic pathway of thioridazine, which may be inferred from the simultaneous elevation of concentrations of both thioridazine and the measured metabolites.  (+info)