Blockade of ATP-sensitive potassium channels in cerebral arterioles inhibits vasoconstriction from hypocapnic alkalosis in cats. (1/239)

BACKGROUND AND PURPOSE: Recent studies have shown that the cerebral arteriolar dilation from hypercapnic acidosis is blocked by agents which inhibit KATP channels. These findings suggested that this response is due to opening of KATP channels. Because the repose to CO2 is a continuum, with hypercapnic acidosis causing vasodilation and hypocapnic alkalosis causing vasoconstriction, it would be expected that the response to hypocapnic alkalosis would be due to closing of KATP channels. There are no studies of the effect of inhibition of KATP channels on the response to hypocapnic alkalosis. METHODS: We investigated the effect of 3 agents that in earlier studies were found to inhibit KATP channels--NG-nitro-L-arginine, hydroxylysine, and glyburide--on the cerebral arteriolar constriction caused by graded hypocapnia induced by hyperventilation in anesthetized cats equipped with cranial windows. RESULTS: Hypocapnic alkalosis caused dose-dependent vasoconstriction that was inhibited completely by each of the 3 inhibitors of KATP channels. The blockade induced by these agents was eliminated in the presence of topical L-lysine (5 micromol/L). CONCLUSIONS: The findings show that agents which inhibit ATP-sensitive potassium channels in cerebral arterioles inhibit the vasoconstriction from hypocapnic alkalosis. These and earlier results showing that inhibition of KATP channels inhibited dilation from hypercapnic acidosis demonstrate that the response to CO2 in cerebral arterioles is mediated by the opening and closing of KATP channels.  (+info)

Intracellular pH regulation by HCO3-/Cl- exchange is activated during early mouse zygote development. (2/239)

We report here that at least one major pHi-regulatory mechanism, the HCO3-/Cl- exchanger, is quiescent in unfertilized mouse eggs but becomes fully activated during early development following fertilization. Zygotes (8-12 h postfertilization) exhibited a marked intracellular alkalinization upon external Cl- removal, which is indicative of active HCO3-/Cl- exchangers, in contrast to the very small response observed in eggs. In addition, efflux of Cl- from eggs upon external Cl- removal was much slower than that from zygotes, indicating additional pathways for Cl- to cross the plasma membrane in zygotes. Furthermore, while zygotes quickly recovered from an induced alkalosis, eggs exhibited only a slow, incomplete recovery. Following in vitro fertilization (IVF), increased HCO3-/Cl- exchanger activity was first detectable about 4 h postfertilization and reached the maximal level after about 8 h. The upregulation of HCO3-/Cl- exchanger activity after fertilization appeared to occur by activation of existing, inactive exchangers rather than by synthesis or transport of new exchangers, as the increase in activity following IVF was unaffected by inhibition of protein synthesis or by disruption of the Golgi apparatus or the cytoskeleton. This activation may depend on the Ca2+ transients which follow fertilization, as suppression of these transients, using the Ca2+ chelator BAPTA, reduced subsequent upregulation of HCO3-/Cl- exchanger activity by about 50%. Activation of pHi-regulatory systems may be a widespread feature of the earliest period of embryonic development, not restricted to species such as marine invertebrates as previously believed.  (+info)

H+-K+-ATPases: regulation and role in pathophysiological states. (3/239)

Molecular cloning experiments have identified the existence of two H+-K+-ATPases (HKAs), colonic and gastric. Recent functional and molecular studies indicate the presence of both transporters in the kidney, which are presumed to mediate the exchange of intracellular H+ for extracellular K+. On the basis of these studies, a picture is evolving that indicates differential regulation of HKAs at the molecular level in acid-base and electrolyte disorders. Of the two transporters, gastric HKA is expressed constitutively along the length of the collecting duct and is responsible for H+ secretion and K+ reabsorption under normal conditions and may be stimulated with acid-base perturbations and/or K+ depletion. This regulation may be species specific. To date there are no data to indicate that the colonic HKA (HKAc) plays a role in H+ secretion or K+ reabsorption under normal conditions. However, HKAc shows adaptive regulation in pathophysiological conditions such as K+ depletion, NaCl deficiency, and proximal renal tubular acidosis, suggesting an important role for this exchanger in potassium, HCO-3, and sodium (or chloride) reabsorption in disease states. The purpose of this review is to summarize recent functional and molecular studies on the regulation of HKAs in physiological and pathophysiological states. Possible signals responsible for regulation of HKAs in these conditions will be discussed. Furthermore, the role of these transporters in acid-base and electrolyte homeostasis will be evaluated in the context of genetically altered animals deficient in HKAc.  (+info)

pH regulation of K(+) efflux from myocytes in isolated rat hearts: (87)Rb, (7)Li, and (31)P NMR studies. (4/239)

This study investigates the effects of intracellular (pH(i)) and extracellular pH (pH(e)) on the efflux of Rb(+) and Li(+) in isolated rat hearts. (87)Rb and (7)Li NMR were used to measure Rb(+) and Li(+) content, respectively, of hearts, and (31)P NMR was used to monitor pH(i), pH(e), and phosphate levels. After 30-min equilibration with Rb(+) or Li(+), effluxes were initiated by switching perfusion to a Rb(+)- or Li(+)-free, high-K(+) (20.7 mM) Krebs-Henseleit buffer with 15 microM bumetanide. Monensin (2 microM) increased pH(i) from 7.10 +/- 0.05 to 7.32 +/- 0.07 and resulted in activation of Rb(+) efflux; the first-order rate constant (k x 10(3), in min(-1)) increased from 42 +/- 2 to 116 +/- 16. Glibenclamide (4 microM) did not inhibit monensin-activated Rb(+) efflux (k = 110 +/- 17), whereas quinine (0.2 mM) slightly inhibited it by 19 +/- 9%. Infusion of 15 mM NH(4)Cl during Rb(+) washout increased k for Rb(+) efflux by 93% (81 +/- 8), which was glibenclamide and quinine insensitive, and caused a transient increase in pH(i) to 7.25 +/- 0.08. Intracellular Li(+) inhibited NH(4)Cl-stimulated Rb(+) efflux by 55%. Monensin and NH(4)Cl stimulated Li(+) efflux by 40%, increasing k from 29 +/- 3 to 43 +/- 7 and 41 +/- 3, respectively. The stimulation was not sensitive to 10 microM dimethylamiloride. Intracellular acidosis that resulted from the washout of NH(4)Cl (pH 6.86 +/- 0.2) slightly inhibited Rb(+) efflux (k = 36 +/- 5), whereas NH(4)Cl itself in the absence of pH(i) changes did not markedly affect Rb(+) efflux. A moderate increase in pH(i) (7.17 +/- 0.06) produced by washout of 15 mM 2, 2-dimethylpropionate (DMP)-Tris from hearts preequilibrated with DMP did not markedly affect Rb(+) efflux. Neither global alkalosis (pH(i) 7.4, pH(e) 7.55) nor acidosis (pH(i) approximately pH(e) 6.8) produced by 3 mM Tris base or 5 mM MES, respectively, affected Rb(+) efflux. We suggest that intracellular alkalosis stimulates Rb(+) (K(+)) and Li(+) effluxes by activating a nonselective sarcolemmal K(+) (Li(+))/cation exchanger or a K(+) (Li(+))-anion symporter.  (+info)

Renal responses of trout to chronic respiratory and metabolic acidoses and metabolic alkalosis. (5/239)

Exposure to hyperoxia (500-600 torr) or low pH (4.5) for 72 h or NaHCO(3) infusion for 48 h were used to create chronic respiratory (RA) or metabolic acidosis (MA) or metabolic alkalosis in freshwater rainbow trout. During alkalosis, urine pH increased, and [titratable acidity (TA) - HCO(-)(3)] and net H(+) excretion became negative (net base excretion) with unchanged NH(+)(4) efflux. During RA, urine pH did not change, but net H(+) excretion increased as a result of a modest rise in NH(+)(4) and substantial elevation in [TA - HCO(-)(3)] efflux accompanied by a large increase in inorganic phosphate excretion. However, during MA, urine pH fell, and net H(+) excretion was 3.3-fold greater than during RA, reflecting a similar increase in [TA - HCO(-)(3)] and a smaller elevation in phosphate but a sevenfold greater increase in NH(+)(4) efflux. In urine samples of the same pH, [TA - HCO(-)(3)] was greater during RA (reflecting phosphate secretion), and [NH(+)(4)] was greater during MA (reflecting renal ammoniagenesis). Renal activities of potential ammoniagenic enzymes (phosphate-dependent glutaminase, glutamate dehydrogenase, alpha-ketoglutarate dehydrogenase, alanine aminotransferase, phosphoenolpyruvate carboxykinase) and plasma levels of cortisol, phosphate, ammonia, and most amino acids (including glutamine and alanine) increased during MA but not during RA, when only alanine aminotransferase increased. The differential responses to RA vs. MA parallel those in mammals; in fish they may be keyed to activation of phosphate secretion by RA and cortisol mobilization by MA.  (+info)

The pathophysiological and molecular basis of Bartter's and Gitelman's syndromes. (6/239)

Molecular defects affecting the transport of sodium, potassium and chloride in the nephron through the ROMK K+ channel, Na+/K+/2Cl- cotransporter, the Na+/Cl- cotransporter and chloride channel have been identified in patients with Bartter's and Gitelman's syndromes. Defects of the angiotensin II type I receptor and CFTR have also being described. These defects are simple (i.e., most are single amino acid substitutions) but affect key elements in tubular transport. The simplicity of the genetic defects may explain why the inheritance of these conditions remains unclear in most kindreds (i.e., not just recessive or dominant) and emphasises the crucial importance of the conformational structure of these channels. Application of this molecular information will allow the early genetic identification of patients with these syndromes and enable us to differentiate between the various disorders at a functional level. It may also identify a subgroup in which the heterozygous form may make patients potentially exquisitely sensitive to diuretics.  (+info)

Defective processing and expression of thiazide-sensitive Na-Cl cotransporter as a cause of Gitelman's syndrome. (7/239)

Gitelman's syndrome is an autosomal recessive disorder of salt wasting and hypokalemia caused by mutations in the thiazide-sensitive Na-Cl cotransporter. To investigate the pathogenesis of Gitelman's syndrome, eight disease mutations were introduced into the mouse thiazide-sensitive Na-Cl cotransporter and studied by functional expression in Xenopus oocytes. Sodium uptake into oocytes that expressed the wild-type clone was more than sevenfold greater than uptake into control oocytes. Uptake into oocytes that expressed the mutated transporters was not different from control. Hydrochlorothiazide reduced Na uptake by oocytes expressing the wild-type gene to control values but had no effect on oocytes expressing the mutant clones. Western blots of oocytes injected with the wild-type clone showed bands representing glycosylated (125 kDa) and unglycosylated (110 kDa) forms of the transport protein. Immunoblot of oocytes expressing the mutated clones showed only the unglycosylated protein, indicating that protein processing was disrupted. Immunocytochemistry with an antibody against the transport protein showed intense membrane staining of oocytes expressing the wild-type protein. Membrane staining was completely absent from oocytes expressing mNCC(R948X); instead, diffuse cytoplasmic staining was evident. In summary, the results show that several mutations that cause Gitelman's syndrome are nonfunctional because the mutant thiazide-sensitive Na-Cl cotransporter is not processed normally, probably activating the "quality control" mechanism of the endoplasmic reticulum.  (+info)

Expression of rat kidney anion exchanger 1 in type A intercalated cells in metabolic acidosis and alkalosis. (8/239)

By enzyme-linked in situ hybridization (ISH), direct evidence is provided that acid-secreting intercalated cells (type A IC) of both the cortical and medullary collecting ducts of the rat kidney selectively express the mRNA of the kidney splice variant of anion exchanger 1 (kAE1) and no detectable levels of the erythrocyte AE1 (eAE1) mRNA. Using single-cell quantification by microphotometry of ISH enzyme reaction, medullary type A IC were found to contain twofold higher kAE1 mRNA levels compared with cortical type A IC. These differences correspond to the higher intensity of immunostaining in medullary versus cortical type A IC. Chronic changes of acid-base status induced by addition of NH(4)Cl (acidosis) or NaHCO3 (alkalosis) to the drinking water resulted in up to 35% changes of kAE1 mRNA levels in both cortical and medullary type A IC. These experiments provide direct evidence at the cellular level of kAE1 expression in type A IC and show moderate capacity of type A IC to respond to changes of acid-base status by modulation of kAE1 mRNA levels.  (+info)