Central autonomic activation by intracisternal TRH analogue excites gastric splanchnic afferent neurons. (1/471)

Intracisternal (ic) injection of thyrotropin-releasing hormone (TRH) or its stable analogue RX 77368 influences gastric function via stimulation of vagal muscarinic pathways. In rats, the increase in gastric mucosal blood flow evoked by a low ic dose of RX 77368 occurs via release of calcitonin gene-related peptide from capsaicin-sensitive afferent neurons, most probably of spinal origin. In this study, the effect of low ic doses of RX 77368 on afferent impulse activity in splanchnic single fibers was investigated. The cisterna magna of overnight-fasted, urethan-anesthetized Sprague-Dawley rats was acutely cannulated, and fine splanchnic nerve twigs containing at least one fiber responsive to mechanical probing of the stomach were isolated at a site immediately distal to the left suprarenal ganglion. Unit mechanoreceptive fields were encountered in all portions of the stomach, both superficially and in deeper layers. Splanchnic afferent unit impulse activity was recorded continuously during basal conditions and in response to consecutive ic injections of saline and RX 77368 (15-30 min later; 1.5 or 3 ng). Basal discharge rates ranged from 0 to 154 impulses/min (median = 10.2 impulses/min). A majority of splanchnic single units with ongoing activity increased their mean discharge rate by >/=20% after ic injection of RX 77368 at either 1.5 ng (6/10 units; median increase 63%) or 3 ng (19/24 units; median increase 175%). Five units lacking impulse activity in the 5-min before ic RX 77368 (3 ng) were also excited, with the onset of discharge occurring within 1.0-5.0 min postinjection. In units excited by ic RX 77368, peak discharge occurred 15.6 +/- 1.3 min after injection and was followed by a decline to stable activity levels +info)

Calcium and cAMP are second messengers in the adipokinetic hormone-induced lipolysis of triacylglycerols in Manduca sexta fat body. (2/471)

We have previously shown that stereospecific hydrolysis of stored triacylglycerol by a phosphorylatable triacylglycerol-lipase is the pathway for the adipokinetic hormone-stimulated synthesis of sn -1, 2-diacylglycerol in insect fat body. The current series of experiments were designed to determine whether cAMP and/or calcium are involved in the signal transduction pathway for adipokinetic hormone in the fat body. After adipokinetic hormone treatment, cAMP-dependent protein kinase activity in the fat body rapidly increased and reached a maximum after 20 min, suggesting that adipokinetic hormone causes an increase in cAMP. Forskolin (0.1 micrometer), an adenylate cyclase activator, induced up to a 97% increase in the secretion of diacylglycerol from the fat body. 8Br-cAMP (a membrane-permeable analog of cAMP) produced a 40% increase in the hemolymph diacylglycerol content. Treatment with cholera toxin, which also stimulates adenylate cyclase, induced up to a 145% increase in diacylglycerol production. Chelation of extracellular calcium produced up to 70% inhibition of the adipokinetic hormone-dependent mobilization of lipids. Calcium-mobilizing agents, ionomycin and thapsigargin, greatly stimulated DG production by up to 130%. Finally, adipokinetic hormone caused a rapid increase of calcium uptake into the fat body. Our findings indicate that the action of adipokinetic hormone in mobilizing lipids from the insect fat body involves both cAMP and calcium as intracellular messengers.  (+info)

Effect of long-term food restriction on pituitary sensitivity to cLHRH-I in broiler breeder females. (3/471)

The effect of long-term food restriction on the sensitivity of the pituitary to exogenously administered chicken luteinizing hormone releasing hormone I (cLHRH-I) was investigated in three groups of broiler breeder females fed ad libitum, fed a restricted quantity of food or fed a restricted quantity of food to obtain an intermediate body weight between those of the first two groups. At 16 weeks of age, basal FSH release was higher in ad libitum fed birds, culminating in ovarian development and subsequent oestradiol production by the small follicles. At this age, LH secretion was independent of ovarian feedback factors. In all groups, cLHRH-I was most active in releasing LH in intact and ovariectomized animals and, to a lesser extent, in releasing FSH in ovariectomized birds. At 39 weeks of age, basal FSH concentrations were similar among intact animals of all groups, whereas LH concentrations differed among groups, with higher values in the restricted birds. This food effect was enhanced in ovariectomized birds. Furthermore, the high response to cLHRH-I in the ovariectomized, restricted birds compared with the ad libitum, ovariectomized group suggests an improved sensitivity of the hypothalamic-pituitary axis. In conclusion, birds fed ad libitum showed the highest responsiveness to ovarian factors and to cLHRH-I in releasing FSH in the period before sexual maturity. No effect of amount of feeding could be observed for LH. However, during the egg laying period, LH release by cLHRH-I was highly dependent on amount of feeding and on ovarian feedback regulation. This finding indicates that the amount of feeding can modify the sensitivity of the pituitary to cLHRH-I, and possibly to gonadal hormones, during the laying period.  (+info)

Intracisternal TRH analog increases gastrin release and corpus histidine decarboxylase activity in rats. (4/471)

Thyrotropin-releasing hormone (TRH) acts in brain stem nuclei to induce vagally mediated stimulation of gastric secretion. The effects of intracisternal injection of the TRH analog RX-77368 on plasma gastrin levels and corpus histidine decarboxylase (HDC) activity were studied in 48-h fasted conscious rats. RX-77368 (25-100 ng) increased plasma gastrin levels by threefold at 30 min, which remained significantly higher than control at 2 and 4 h postinjection. Corpus HDC activity began to increase at 2 h and reached a peak at 4 h postinjection with a 21-fold maximum response observed at 50 ng. Morphological changes in the appearance of corpus HDC-immunoreactive cells correlated well with HDC activity. Pretreatment with gastrin monoclonal antibody completely prevented RX-77368 stimulatory effects on HDC activity. Atropine significantly attenuated gastrin increase at 30 min by 26%. These results indicated that in conscious fasted rats, TRH analog acts in the brain to increase corpus HDC activity in the enterochromaffin-like cells, which involves gastrin release stimulated by central TRH analog.  (+info)

Identification in the NK1 tachykinin receptor of a domain involved in recognition of neurokinin A and septide but not of substance P. (5/471)

The three mammalian tachykinins, substance P (SP), neurokinin A (NKA) and neurokinin B (NKB), exert their physiological effects through specific receptors, NK1, NK2 and NK3, respectively. However, homologous binding studies have recently demonstrated that, contrary to the generally accepted belief, NKA could bind NK1 receptor with high affinity (Hastrup and Schwartz, 1996). Using COS-7 cells expressing the human NK1 receptor, we show that two simultaneous point mutations (E193L and V195R) in a restricted five amino acid sequence (the (193-197) region), selected because of its hydropathic complementarity with the common C-terminal extremity of tachykinins, abolish both the high-affinity binding and highly potent biological activity of NKA, without affecting those of SP. In addition, the same mutations also suppressed the high functional activity of septide, a synthetic SP atypical agonist ([pGlu6-Pro9] SP 6-11). These results suggest that the (193-197) region, located at the end of the second extracellular loop of the receptor, could be part of a common high-affinity binding domain for both NKA and septide, distinct from the SP binding site.  (+info)

Locust corpora cardiaca contain an inactive adipokinetic hormone. (6/471)

A neuropeptide from the migratory locust, Locusta migratoria, has been identified as a novel member of the family of adipokinetic hormones (AKHs). The peptide is probably synthesised in the brain because it is the first AKH found in the storage lobe, whilst the three 'classic' Locusta AKHs are present in the glandular lobe of the corpora cardiaca. In locusts, the peptide has no biological activity usually associated with AKHs. There is only 36-56% sequence identity with the three Lom-AKHs, but 78% identity with the Drosophila melanogaster AKH, Drm-HrTH. The new peptide is active in the American cockroach, Periplaneta americana, and was provisionally named 'L. migratoria hypertrehalosaemic hormone', Lom-HrTH; its biological role in locusts remains to be established. The high degree of identity with Drm-HrTH suggests that Lom-HrTH is an ancient molecule.  (+info)

Dietary protein, growth and urea kinetics in severely malnourished children and during recovery. (7/471)

The case mortality for severe malnutrition in childhood remains high, but established best approaches to treatment are not used in practice. The energy and protein content of the diet at different stages of treatment appears important, but remains controversial. The effect on growth, urea kinetics and the urinary excretion of 5-L-oxoproline was compared between a standard infant formula (HP group) provided in different quantities at each stage of treatment and a recommended dietary regimen, which differentiates the requirements of protein and energy during the acute phase of resuscitation (maintenance intake of energy and protein, relatively low protein to energy ratio, LP group) from those during the restoration of a weight deficit (energy and nutrient dense). The energy required to maintain weight was less in the HP than the LP group, but the HP group was not able to achieve as high an energy intake during repletion of wasting because of the high volume which would have had to be consumed. Compared to the LP group, in the HP group during catch-up growth there was significantly greater deposition of lean tissue and higher rates of urea production, hydrolysis and salvage of urea-nitrogen. These, together with higher rates of 5-L-oxoprolinuria, suggest a greater constraint of the formation of adequate amounts of nonessential amino acids, especially glycine, in the face of enhanced demands. Although more effective rehabilitation might be achieved using a standard formula, there is the need to determine the extent to which it might impose metabolic stress compared with the modified formulation.  (+info)

Diversity of thyrotropin-releasing hormone receptors in the pituitary and discrete brain regions of rats. (8/471)

In order to analyze the receptor properties of central nervous system (CNS)-stimulant thyrotropin-releasing hormone (L-pyroglutamyl-L-histidyl-L-prolinamide, TRH), we evaluated the binding of TRH and its analog taltirelin hydrate ((-)-N-[(S)-hexahydro-1-methyl-2,6-dioxo-4-pyrimidinylcarbonyl]-L- histidyl-L-prolinamide tetrahydrate; taltirelin, TA-0910) in rat anterior pituitary and several brain regions. There was a specific binding of [3H]methyl TRH (MeTRH) in the anterior pituitary, hypothalamus, brain stem, cerebral cortex and cerebellum with Kd values of 1.0-1.6 nM. The inhibition of [3H]MeTRH binding by TRH and taltirelin was monophasic in the anterior pituitary, hypothalamus and brain stem with Ki values of 6.3-8.0 nM and 145.5-170.4 nM for TRH and taltirelin, respectively. In contrast, the biphasic inhibition was revealed in the cerebral cortex and cerebellum. The Ki values for TRH and taltirelin were 4.1-4.3 nM and 67.8-73.4 nM for the high affinity binding site and 3.6-4.2 microM and 82.3-197.5 microM for the low affinity binding site, respectively. Addition of 100 microM GTP or its analog 5'-guanylylimidodiphosphate (Gpp[NH]p) affected neither the biphasic inhibition by TRH nor that by taltirelin. Thus the results suggest the presence of distinct high and low affinity TRH receptors in the CNS in contrast to the pituitary.  (+info)