Oxidation of indole-3-acetic acid by dioxygen catalysed by plant peroxidases: specificity for the enzyme structure. (17/2030)

Indole-3-acetic acid (IAA) can be oxidized via two mechanisms: a conventional hydrogen-peroxide-dependent pathway, and one that is hydrogen-peroxide-independent and requires oxygen. It has been shown here for the first time that only plant peroxidases are able to catalyse the reaction of IAA oxidation with molecular oxygen. Cytochrome c peroxidase (CcP), fungal peroxidases (manganese-dependent peroxidase, lignin peroxidase and Arthromyces ramosus peroxidase) and microperoxidase were essentially inactive towards IAA in the absence of added H2O2. An analysis of amino acid sequences allowed five structurally similar fragments to be identified in auxin-binding proteins and plant peroxidases. The corresponding fragments in CcP and fungal peroxidases showed no similarity with auxin-binding proteins. Five structurally similar fragments form a subdomain including the catalytic centre and two residues highly conserved among 'classical' plant peroxidases only, namely His-40 and Trp-117. The subdomain identified above with the two residues might be responsible for the oxidation of the physiological substrate of classical plant peroxidases, IAA.  (+info)

Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana. (18/2030)

The plant hormone auxin regulates diverse aspects of plant growth and development. We report that in Arabidopsis, auxin response is dependent on a ubiquitin-ligase (E3) complex called SCFTIR1. The complex consists of proteins related to yeast Skp1p and Cdc53p called ASK and AtCUL1, respectively, as well as the F-box protein TIR1. Mutations in either ASK1 or TIR1 result in decreased auxin response. Further, overexpression of TIR1 promotes auxin response suggesting that SCFTIR1 is limiting for the response. These results provide new support for a model in which auxin action depends on the regulated proteolysis of repressor proteins.  (+info)

Expansins are conserved in conifers and expressed in hypocotyls in response to exogenous auxin. (19/2030)

Differential display reverse transcription-polymerase chain reaction was used to detect the induction of gene expression during adventitious root formation in loblolly pine (Pinus taeda) after treatment with the exogenous auxin indole-3-butyric acid. A BLAST search of the GenBank database using one of the clones obtained revealed very strong similarity to the alpha-expansin gene family in angiosperms. A near-full-length loblolly pine alpha-expansin sequence was obtained using 5'- and 3'-rapid amplification of cDNA end cloning, and the deduced amino acid sequence was highly conserved relative to those of angiosperm expansins. Northern analysis indicates that alpha-expansin mRNA expression increases 50- to 100-fold in the base of hypocotyl stem cuttings from loblolly pine seedlings in response to indole-3-butyric acid, with peak expression occurring 24 to 48 h after induction.  (+info)

Ethylene plays multiple nonprimary roles in modulating the gravitropic response in tomato. (20/2030)

Ethylene is known to interact with auxin in regulating stem growth, and yet evidence for the role of ethylene in tropic responses is contradictory. Our analysis of four mutants of tomato (Lycopersicon esculentum) altered in their response to gravity, auxin, and/or ethylene revealed concentration-dependent modulation of shoot gravitropism by ethylene. Ethylene inhibitors reduce wild-type gravicurvature, and extremely low (0.0005-0.001 microliter L-1) ethylene concentrations can restore the reduced gravitropic response of the auxin-resistant dgt (diageotropica) mutant to wild-type levels. Slightly higher concentrations of ethylene inhibit the gravitropic response of all but the ethylene-insensitive nr (never-ripe) mutant. The gravitropic responses of nr and the constitutive-response mutant epi (epinastic) are slightly and significantly delayed, respectively, but otherwise normal. The reversal of shoot gravicurvature by red light in the lz-2 (lazy-2) mutant is not affected by ethylene. Taken together, these data indicate that, although ethylene does not play a primary role in the gravitropic response of tomato, low levels of ethylene are necessary for a full gravitropic response, and moderate levels of the hormone specifically inhibit gravicurvature in a manner different from ethylene inhibition of overall growth.  (+info)

Auxin induction of cell cycle regulated activity of tobacco telomerase. (21/2030)

Telomerase activity was measured at each phase of the cell cycle in synchronized tobacco (Nicotiana tabacum) BY-2 cells in suspension culture with the use of the telomeric repeat amplification protocol assay. The activity was low or undetectable at most phases of the cell cycle but showed a marked increase at early S phase. The induction of telomerase activity was not affected by the S phase blockers aphidicolin (which inhibits DNA polymerase alpha) or hydroxyurea (which inhibits ribonucleotide reductase), but it was prevented by olomoucine, an inhibitor of Cdc2/Cdk2 kinases that blocks G(1)-S cell cycle transition. These results suggest that the induction of telomerase activity is not directly coupled to DNA replication by conventional DNA polymerases, but rather is triggered by the entry of cells into S phase. Various analogs of the plant hormone auxin, including indole-3-acetic acid, alpha-naphthaleneacetic acid, and 2,4-dichlorophenoxyacetic acid, potentiated the increase in telomerase activity at early S phase; the growth-inactive analog 2,3-dichlorophenoxyacetic acid, however, had no such effect. Potentiation by indole-3-acetic acid of the induction of telomerase activity was dose dependent. Together, these data indicate that telomerase activity in tobacco cells is regulated in a cell cycle-dependent manner, and that the increase in activity at S phase is specifically inducible by auxin.  (+info)

Production of homo- and hetero-dimeric isozymes from two aldehyde oxidase genes of Arabidopsis thaliana. (22/2030)

Polyclonal antibodies were raised against synthetic peptides or recombinant polypeptides encoded by Arabidopsis atAO-1 and atAO-2 cDNAs, which have sequences similar to maize and animal aldehyde oxidase (AO) cDNAs. Anti-atAO-1 antibodies recognized AOalpha and AObeta among the three isoforms, AOalpha, AObeta, and AOgamma, detected in Arabidopsis seedlings after native PAGE, while anti-atAO-2 antibodies reacted with AObeta and AOgamma. The polypeptide specifically recognized by each antibody was collected as the Protein-A/IgG/antigen complex. The 150- and 145-kDa polypeptides were purified by SDS-PAGE and digested with Achromobacter Protease I. From the amino acid sequences and molecular masses of the derivative peptides, it was revealed that the 150- and 145-kDa polypeptides were the products of atAO-1 and atAO-2, respectively. Molecular masses of the native forms of AOalpha, AObeta, and AOgamma were estimated as approximately 290-300 kDa. These results suggest that AOalpha and AOgamma are homodimers consisting of atAO-1 and atAO-2 products, respectively, and that AObeta is a heterodimer of the atAO-1 and atAO-2 products.  (+info)

Biochemical characterization of recombinant polypeptides corresponding to the predicted betaalphaalpha fold in Aux/IAA proteins. (23/2030)

The plant hormone indoleacetic acid (IAA or auxin) transcriptionally activates a select set of early genes. The Aux/IAA class of early auxin-responsive genes encodes a large family of short-lived, nuclear proteins. Aux/IAA polypeptides homo- and heterodimerize, and interact with auxin-response transcription factors (ARFs) via C-terminal regions conserved in both protein families. This shared region contains a predicted betaalphaalpha motif similar to the prokaryotic beta-ribbon DNA binding domain, which mediates both protein dimerization and DNA recognition. Here, we show by circular dichroism spectroscopy and by chemical cross-linking experiments that recombinant peptides corresponding to the predicted betaalphaalpha region of three Aux/IAA proteins from Arabidopsis thaliana contain substantial alpha-helical secondary structure and undergo homo- and heterotypic interactions in vitro. Our results indicate a similar biochemical function of the plant betaalphaalpha domain and suggest that the betaalphaalpha fold plays an important role in mediating combinatorial interactions of Aux/IAA and ARF proteins to specifically regulate secondary gene expression in response to auxin.  (+info)

Multiubiquitin chain binding subunit MCB1 (RPN10) of the 26S proteasome is essential for developmental progression in Physcomitrella patens. (24/2030)

The 26S proteasome, a multisubunit complex, is the primary protease of the ubiquitin-mediated proteolytic system in eukaryotes. We have recently characterized MCB1 (RPN10), a subunit of the 26S complex that has affinity for multiubiquitin chains in vitro and as a result may function as a receptor for ubiquitinated substrates. To define the role of MCB1 further, we analyzed its function in Physcomitrella patens by generating MCB1 gene disruptions using homologous recombination. PpMCB1, which is 50 to 75% similar to orthologs from other eukaryotes, is present in the 26S proteasome complex and has a similar affinity for multiubiquitin chains, using a conserved hydrophobic domain within the C-terminal half of the polypeptide. Unlike yeast Deltamcb1 strains, which grow normally, P. patens Deltamcb1 strains are viable but are under developmental arrest, generating abnormal caulonema that are unable to form buds and gametophores. Treatment with auxin and cytokinin restored bud formation and subsequent partial development of gametophores. Complementation of a Deltamcb1 strain with mutated versions of PpMCB1 revealed that the multiubiquitin chain binding site is not essential for the wild-type phenotype. These results show that MCB1 has an important function in the 26S proteasome of higher order eukaryotes in addition to its ability to bind multiubiquitin chains, and they provide further support for a role of the ubiquitin/26S proteasome proteolytic pathway in plant developmental processes triggered by hormones.  (+info)