Reactive oxygen intermediate-dependent NF-kappaB activation by interleukin-1beta requires 5-lipoxygenase or NADPH oxidase activity. (1/691)

We previously reported that the role of reactive oxygen intermediates (ROIs) in NF-kappaB activation by proinflammatory cytokines was cell specific. However, the sources for ROIs in various cell types are yet to be determined and might include 5-lipoxygenase (5-LOX) and NADPH oxidase. 5-LOX and 5-LOX activating protein (FLAP) are coexpressed in lymphoid cells but not in monocytic or epithelial cells. Stimulation of lymphoid cells with interleukin-1beta (IL-1beta) led to ROI production and NF-kappaB activation, which could both be blocked by antioxidants or FLAP inhibitors, confirming that 5-LOX was the source of ROIs and was required for NF-kappaB activation in these cells. IL-1beta stimulation of epithelial cells did not generate any ROIs and NF-kappaB induction was not influenced by 5-LOX inhibitors. However, reintroduction of a functional 5-LOX system in these cells allowed ROI production and 5-LOX-dependent NF-kappaB activation. In monocytic cells, IL-1beta treatment led to a production of ROIs which is independent of the 5-LOX enzyme but requires the NADPH oxidase activity. This pathway involves the Rac1 and Cdc42 GTPases, two enzymes which are not required for NF-kappaB activation by IL-1beta in epithelial cells. In conclusion, three different cell-specific pathways lead to NF-kappaB activation by IL-1beta: a pathway dependent on ROI production by 5-LOX in lymphoid cells, an ROI- and 5-LOX-independent pathway in epithelial cells, and a pathway requiring ROI production by NADPH oxidase in monocytic cells.  (+info)

Interaction of 5-lipoxygenase with cellular proteins. (2/691)

5-Lipoxygenase (5LO) plays a pivotal role in cellular leukotriene synthesis. To identify proteins interacting with human 5LO, we used a two-hybrid approach to screen a human lung cDNA library. From a total of 1.5 x 10(7) yeast transformants, nine independent clones representing three different proteins were isolated and found to specifically interact with 5LO. Four 1.7- to 1.8-kb clones represented a 16-kDa protein named coactosin-like protein for its significant homology with coactosin, a protein found to be associated with actin in Dictyostelium discoideum. Coactosin-like protein thus may provide a link between 5LO and the cytoskeleton. Two other yeast clones of 1.5 kb encoded transforming growth factor (TGF) type beta receptor-I-associated protein 1 partial cDNA. TGF type beta receptor-I-associated protein 1 recently has been reported to associate with the activated form of the TGF beta receptor I and may be involved in the TGF beta-induced up-regulation of 5LO expression and activity observed in HL-60 and Mono Mac 6 cells. Finally, three identical 2.1-kb clones contained the partial cDNA of a human protein with high homology to a hypothetical helicase K12H4. 8 from Caenorhabditis elegans and consequently was named DeltaK12H4. 8 homologue. Analysis of the predicted amino acid sequence revealed the presence of a RNase III motif and a double-stranded RNA binding domain, indicative of a protein of nuclear origin. The identification of these 5LO-interacting proteins provides additional approaches to studies of the cellular functions of 5LO.  (+info)

Leukotriene binding, signaling, and analysis of HIV coreceptor function in mouse and human leukotriene B4 receptor-transfected cells. (3/691)

The mouse leukotriene B4 receptor (m-BLTR) gene was cloned. Membrane fractions of human embryonic kidney 293 cells stably expressing m-BLTR demonstrated a high affinity and specific binding for leukotriene B4 (LTB4, Kd = 0.24 +/- 0.03 nM). In competition binding experiments, LTB4 was the most potent competitor (Ki = 0.23 +/- 0.05 nM) followed by 20-hydroxy-LTB4 (Ki = 1.1 +/- 0.2 nM) and by 6-trans-12-epi-LTB4 and LTD4 (Ki > 1 microM). In stably transfected Chinese hamster ovary cells, LTB4 inhibited forskolin-activated cAMP production and induced an increase of intracellular calcium, suggesting that this receptor is coupled to Gi- and Go-like proteins. In Xenopus laevis melanophores transiently expressing m-BLTR, LTB4 induced the aggregation of pigment granules, confirming the inhibition of cAMP production induced by LTB4. BLT receptors share significant sequence homology with chemokine receptors (CCR5 and CXCR4) that act as human immunodeficiency virus (HIV) coreceptors. However, among the 16 HIV/SIV strains tested, the human BLT receptor did not act as a coreceptor for virus entry into CD4-expressing cells based on infection and cell-cell fusion assays. In 5-lipoxygenase-deficient mice, the absence of leukotriene B4 biosynthesis did not detectably alter m-BLT receptor binding in membranes obtained from glycogen-elicited neutrophils. Isolation of the m-BLTR gene will form the basis of future experiments to elucidate the selective role of LTB4, as opposed to cysteinyl-leukotrienes, in murine models of inflammation.  (+info)

Pneumococcus activation of the 5-lipoxygenase pathway and production of glycoproteins in the middle ear of rats. (4/691)

Pneumococcal otitis media is associated with the production of potent inflammatory mediators (leukotrienes), but the mechanism by which pneumococcus induces production of leukotrienes in the middle ear is poorly understood. In this study, up-regulation of 2 genes that govern the lipoxygenase pathway, cPLA2 and 5-LOX, was observed in rats following inoculation of pneumococcus into the middle ear cavity. Expression of cPLA2 was low, and 5-LOX gene expression was not detected in control animals. Up-regulation of cPLA2 and 5-LOX in middle ear epithelial cells was accompanied by an increase of high-molecular-weight glycoproteins in middle ear fluid and cells. These findings suggest that pneumococcus activates the lipoxygenase pathway by up-regulating expression of the cPLA2 and 5-LOX genes. This, in turn, may stimulate synthesis and secretion of high-molecular-weight glycoproteins that facilitate production of fluid in the middle ear cleft.  (+info)

Leukotriene A synthase activity of purified mouse skin arachidonate 8-lipoxygenase expressed in Escherichia coli. (5/691)

Mouse skin 8-lipoxygenase was expressed in COS-7 cells by transient transfection of its cDNA in pEF-BOS carrying an elongation factor-1alpha promoter. When crude extract of the transfected COS-7 cells was incubated with arachidonic acid, 8-hydroxy-5,9,11, 14-eicosatetraenoic acid was produced as assessed by reverse- and straight-phase high performance liquid chromatographies. The recombinant enzyme also reacted on alpha-linolenic and docosahexaenoic acids at almost the same rate as that with arachidonic acid. Eicosapentaenoic and gamma-linolenic acids were also oxygenated at 43% and 56% reaction rates of arachidonic acid, respectively. In contrast, linoleic acid was a poor substrate for this enzyme. The 8-lipoxygenase reaction with these fatty acids proceeded almost linearly for 40 min. The 8-lipoxygenase was also expressed in an Escherichia coli system using pQE-32 carrying six histidine residues at N-terminal of the enzyme. The expressed enzyme was purified over 380-fold giving a specific activity of approximately 0.2 micromol/45 min per mg protein by nickel-nitrilotriacetate affinity chromatography. The enzymatic properties of the purified 8-lipoxygenase were essentially the same as those of the enzyme expressed in COS-7 cells. When the purified 8-lipoxygenase was incubated with 5-hydroperoxy-6,8,11, 14-eicosatetraenoic acid, two epimers of 6-trans-leukotriene B4, degradation products of unstable leukotriene A4, were observed upon high performance liquid chromatography. Thus, the 8-lipoxygenase catalyzed synthesis of leukotriene A4 from 5-hydroperoxy fatty acid. Reaction rate of the leukotriene A synthase was approximately 7% of arachidonate 8-lipoxygenation. In contrast to the linear time course of 8-lipoxygenase reaction with arachidonic acid, leukotriene A synthase activity leveled off within 10 min, indicating suicide inactivation.  (+info)

Cytosolic phospholipase A2 is essential for both the immediate and the delayed phases of eicosanoid generation in mouse bone marrow-derived mast cells. (6/691)

We have used mice in which the gene for cytosolic phospholipase A2 (cPLA2) has been disrupted to demonstrate the absolute requirement for cPLA2 in both the immediate and the delayed phases of eicosanoid generation by bone marrow-derived mast cells. For the immediate phase, quantitative analysis of the products of the 5-lipoxygenase pathway showed that gene disruption of cPLA2 prevented the provision of arachidonic acid substrate for biosynthesis of proximal intermediates. By analogy, we conclude that arachidonic acid substrate was also not available to prostaglandin endoperoxide synthase 1 in the immediate phase of prostaglandin (PG) D2 generation. These defects occurred with two distinct stimuli, stem cell factor and IgE/antigen, which were, however, sufficient for signal transduction defined by exocytosis of beta-hexosaminidase. Whereas cPLA2 is essential for immediate eicosanoid generation by providing arachidonic acid, its role in delayed-phase PGD2 generation is more complex and involves the activation-dependent induction of prostaglandin endoperoxide synthase 2 and the supply of arachidonic acid for metabolism to PGD2.  (+info)

Relationship of arachidonic acid metabolizing enzyme expression in epithelial cancer cell lines to the growth effect of selective biochemical inhibitors. (7/691)

Arachidonic acid (AA) metabolizing enzymes are emerging as significant mediators of growth stimulation for epithelial cells. The relative contribution of the various family members of AA metabolizing enzymes to epithelial cancer cell growth is not known. To study this question, we first analyzed a series of epithelial cancer cells to establish the relative frequency of expression for the various enzymes. We analyzed the expression of five AA metabolizing enzymes as well as 5-lipoxygenase activating protein (FLAP) in a panel of human epithelial cancer cell lines (n = 20) using reverse transcription-PCR. From this analysis, we found that cyclooxygenase-1 (COX-1), 5-lipoxygenase (5-LOX), and FLAP were universally expressed in all cancer cell lines tested. For the remaining enzymes, the expression of COX-2, 12-LOX, and 15-LOX varied among cell lines, 60, 35, and 90%, respectively. Although the pattern of expression varied among the different cell types, all of the enzymes were expressed in all major cancer histologies. Using a panel of selective biochemical AA metabolizing enzyme inhibitors, we then evaluated the effect of these agents on cell lines with known expression status for the AA metabolizing enzymes. For the enzymes that were not universally expressed, growth inhibition by selective biochemical inhibitors did not closely correlate with the expression status of specific enzymes (P > 0.05). For the universally expressed enzymes, the LOX inhibitors were more potent growth inhibitors than the COX inhibitors. The frequent expression of the AA metabolizing enzymes suggests that AA metabolism pathway may be modulated in response to xenobiotic exposure during carcinogenesis. Although establishing a priori AA metabolizing enzyme status was not consistently informative about what AA metabolizing enzyme inhibition would be most growth inhibitory, the frequent inhibition of many epithelial cancers by these biochemical inhibitors opens a new avenue for cancer therapy and intervention in carcinogenesis.  (+info)

Gene expression of 5-lipoxygenase and LTA4 hydrolase in renal tissue of nephrotic syndrome patients. (8/691)

Leukotrienes (LT) of the 5-lipoxygenase pathway constitute a class of potent biological lipid mediators of inflammation implicated in the pathogenesis of different models of experimental glomerulonephritis. The key enzyme, 5-lipoxygenase (5-LO), catalyses oxygenation of arachidonic acid to generate the primary leukotriene LTA4. This LT, in turn, serves as a substrate for either LTA4 hydrolase, to form the potent chemoattractant LTB4, or LTC4 synthase, to produce the powerful vasoconstrictor LTC4. To investigate the potential role of LT in the pathogenesis of human glomerulonephritis with nephrotic syndrome, we examined the gene expression of 5-LO and LTA4 hydrolase in renal tissue of 21 adult patients with nephrotic syndrome and 11 controls. The patients consisted of 11 cases of membranous nephropathy (MN), seven focal and segmental glomerulosclerosis (FSGS), two non-IgA mesangial glomerulonephritis and one minimal change disease. Total RNA purified from renal tissue was reverse transcribed into cDNA and amplified with specific primers in a polymerase chain reaction (RT-PCR). Eight patients' renal tissue, four MN and four FSGS, co-expressed 5-LO and LTA4 hydrolase. In situ hybridization analysis revealed 5-LO expression and distribution limited to the interstitial cells surrounding the peritubular capillaries. Comparative clinical and immunohistological data showed that these eight patients had impaired renal function and interstitial changes that significantly correlated with 5-LO expression. These findings suggest that leukotrienes may play an important role in the pathogenesis of MN and FSGS. These results are also relevant to elucidating the pathophysiologic mechanisms which underlie progression to renal failure in these diseases.  (+info)