Characterization of two chloroplast RNA polymerase sigma factors from Zea mays: photoregulation and differential expression. (17/5543)

Two distinct cDNAs encoding putative sigma factors of plastid RNA polymerase were isolated from Zea mays, a C4 plant. The deduced amino acid sequences of both cDNAs possess all four highly conserved domains proposed for recognition of -10 and -35 promoter elements, core complex binding, DNA binding, and melting. These two cDNAs are designated sig1 and sig2. Phylogenetic analysis of available plastid sigma factors indicated that they were probably the descendants of cyanobacterial principal sigma factors. Southern blots probed with sig1 and sig2 revealed that both genes exist in the maize nuclear genome as single-copy genes, but low-stringency hybridization suggested the presence of a multigene family of maize plastid sigma factors. Transcription of sig1 and sig2 is light inducible and tissue specific. Transcripts of sig1 and sig2 were abundant in greening leaf tissues; sig2 (but not sig1) was barely detectable in etiolated leaves and neither was detectable in roots. Immunological studies using a peptide antibody against an epitope in subdomain 2.4 of Sig1 revealed 50-kDa and 60-kDa immunoreactive proteins in maize chloroplasts. Reduced levels of the 60-kDa immunoreactive protein were detected in etioplasts, and no immunoreactive proteins were observed in roots. Collectively, the data suggest that the nuclear genes, sig1 and sig2, may play a role in differential expression of plastid genes during chloroplast biogenesis.  (+info)

Dietary chromic oxide does not affect the utilization of organic compounds but can alter the utilization of mineral salts in gilthead sea bream Sparus aurata. (18/5543)

This study was conducted to determine whether the level of chromic oxide supplemented to diets containing gelatinized starch as the carbohydrate source affects digestibility, body composition, growth performances, and liver enzyme activities in gilthead sea bream, Sparus aurata. Gilthead sea bream fingerlings were fed diets containing gelatinized corn starch as the carbohydrate source and several levels of chromic oxide (0, 5, 10 and 20 g/kg) for 6 wk. No effect of dietary chromium level was detected on carbon, nitrogen, or dry matter digestibility. Calcium and phosphorus digestibility were higher in fish fed the diet supplemented with 5 g/kg chromic oxide than in fish fed the other supplemented diets. Dietary chromium did not affect dry matter, carbon, nitrogen, protein, or lipid concentrations in fish. However, fish fed 5 g/kg chromic oxide generally had higher levels of calcium, phosphorus, and ash than fish fed the other Cr-containing diets. Chromium concentration was significantly higher in fish fed the diets with 0.5 and 1% chromic oxide than in fish fed the control diet. Chromium supplementation of the diets did not affect the specific growth rate, the food efficiency ratio, the protein efficiency ratio, or, protein or nitrogen retention of the fish. Blood glucose and the activity of several liver enzymes involved in carbohydrate metabolism were unaffected by dietary chromic oxide. Alanine aminotransferase was lower in the fish fed the diet with 10 g/kg of chromic oxide than in unsupplemented controls. Our results indicate that chromic oxide can be used as a neutral marker in fish nutrition studies involving organic compounds, but not mineral salts.  (+info)

The auxin-binding protein Nt-ERabp1 alone activates an auxin-like transduction pathway. (19/5543)

Hyperpolarization of tobacco protoplasts is amongst the earliest auxin responses described. It has been proposed that the auxin-binding protein, ABP1, or a related protein could be involved in the first step of auxin perception at the plasma membrane. Using for the first time homologous conditions for interaction between the protein Nt-ERabp1 or a synthetic peptide corresponding to the C-terminus and tobacco protoplasts, we have demonstrated that both can induce the hyperpolarization response. The results show that Nt-ERabp1 or the C-terminal peptide alone activates the auxin pathway from the outer face of the plasma membrane.  (+info)

The maize homologue of the cell cycle checkpoint protein MAD2 reveals kinetochore substructure and contrasting mitotic and meiotic localization patterns. (20/5543)

We have identified a maize homologue of yeast MAD2, an essential component in the spindle checkpoint pathway that ensures metaphase is complete before anaphase begins. Combined immunolocalization of MAD2 and a recently cloned maize CENPC homologue indicates that MAD2 localizes to an outer domain of the prometaphase kinetochore. MAD2 staining was primarily observed on mitotic kinetochores that lacked attached microtubules; i.e., at prometaphase or when the microtubules were depolymerized with oryzalin. In contrast, the loss of MAD2 staining in meiosis was not correlated with initial microtubule attachment but was correlated with a measure of tension: the distance between homologous or sister kinetochores (in meiosis I and II, respectively). Further, the tension-sensitive 3F3/2 phosphoepitope colocalized, and was lost concomitantly, with MAD2 staining at the meiotic kinetochore. The mechanism of spindle assembly (discussed here with respect to maize mitosis and meiosis) is likely to affect the relative contributions of attachment and tension. We support the idea that MAD2 is attachment-sensitive and that tension stabilizes microtubule attachments.  (+info)

Molecular cloning of the maize gene crp1 reveals similarity between regulators of mitochondrial and chloroplast gene expression. (21/5543)

The maize nuclear gene crp1 is required for the translation of the chloroplast petA and petD mRNAs and for the processing of the petD mRNA from a polycistronic precursor. In order to understand the biochemical role of the crp1 gene product and the interconnections between chloroplast translation and RNA metabolism, the crp1 gene and cDNA were cloned. The predicted crp1 gene product (CRP1) is related to nuclear genes in fungi that play an analogous role in mitochondrial gene expression, suggesting an underlying mechanistic similarity. Analysis of double mutants that lack both chloroplast ribosomes and crp1 function indicated that CRP1 activates a site-specific endoribonuclease independently of any role it plays in translation. Antibodies prepared to recombinant CRP1 were used to demonstrate that CRP1 is localized to the chloroplast stroma and that it is a component of a multisubunit complex. The CRP1 complex is not associated detectably with either chloroplast membranes or chloroplast ribosomes. Models for CRP1 function and its relationship to other activators of organellar translation are discussed.  (+info)

Effects of corn processing and dietary fiber source on feedlot performance, visceral organ weight, diet digestibility, and nitrogen metabolism in lambs. (22/5543)

In Exp. 1, early-weaned Targhee and Polypay crossbred lambs (60 ewes and 66 rams; initial BW 24 +/- 1.0 kg) were used in a 2 x 3 factorial experiment to determine the effects of corn processing (whole shelled corn [WSC] or ground and pelleted corn [GC]) in combination with supplemental fiber (none [control]; soybean hulls, SBH [highly digestible]; or peanut hulls, PH [highly indigestible]) on DMI, ADG, feed efficiency, and visceral organ weight. For the total trial, WSC resulted in a 4% increase (P < .01) in ADG vs GC, and supplemental fiber resulted in increased (P < .01) DMI and ADG vs the control diet. Experiment 2 was conducted using 12 Targhee and Polypay crossbred wether lambs (initial BW 25 +/- 7 kg) to determine the effects of corn processing and fiber source in high-concentrate diets on diet digestibility and N retention using the same diets as in Exp. 1. Lambs fed WSC had greater (P < .001) apparent N digestion, true N digestion, and N retention (P < .01) than those fed GC. The apparent digestibilities of DM, OM, and NDF were greater (P < .001) for WSC than for GC diets. Peanut hulls resulted in decreased (P < .01) DM, OM, and NDF apparent digestibilities compared with the control and SBH diets. Starch digestion was not affected (P > .10) by diet. Whole corn resulted in improved DM, OM, NDF, and N digestibility compared with GC. Overall, both the SBH and PH diets resulted in greater DMI and ADG than the control diet, which lacked supplemental fiber.  (+info)

Absence of limiting amino acids in calves fed a corn and soybean meal diet past three months of age. (23/5543)

We conducted three nitrogen balance trials using Holstein bull calves older than 16 wk (Trial 1; n = 8), 13 wk (Trial 2; n = 6), and 15 wk of age (Trial 3; n = 9) in a 4 x 4 (Trial 1) or 3 x 3 Latin square design (Trials 2 and 3) to identify limiting amino acids for a corn and soybean meal diet. All calves were trained to maintain reflex closure of the reticular groove after weaning at 5 wk of age. The basal diet was fed daily at 20 or 27 g/kg BW (Trial 1) and at 20 g/kg BW (Trials 2 and 3). The lower feeding level resulted in reduced urinary excretion of purine derivatives, suggesting reduced synthesis of ruminal microbial protein (Trial 1). In Trials 1 and 2, administration of DL-methionine plus L-lysine monohydrochloride through the reticular groove did not increase N retention compared with the supplement of isonitrogenous L-glutamine at either level of intake. In Trial 3, administration of either casein or isonitrogenous monosodium glutamate increased N retention to a similar extent above that observed with a N-free supplement. Results suggested that no specific amino acids were limiting for the corn-soybean meal diet. Administration of methionine plus lysine resulted in a remarkable increase in plasma methionine (Trials 1 and 2), especially at the lower intake level (Trial 1), and a decrease in plasma branched-chain amino acids at either intake level. Glutamine supplementation did not increase plasma branched-chain amino acids compared with the supplementation of diammonium citrate (Trial 2).  (+info)

Identification of the soluble starch synthase activities of maize endosperm. (24/5543)

This study identified the complement of soluble starch synthases (SSs) present in developing maize (Zea mays) endosperm. The product of the du1 gene, DU1, was shown to be one of the two major soluble SSs. The C-terminal 450 residues of DU1 comprise eight sequence blocks conserved in 28 known or predicted glucan synthases. This region of DU1 was expressed in Escherichia coli and shown to possess SS activity. DU1-specific antisera detected a soluble endosperm protein of more than 200 kD that was lacking in du1- mutants. These antisera eliminated 20% to 30% of the soluble SS activity from kernel extracts. Antiserum against the isozyme zSSI eliminated approximately 60% of the total soluble SS, and immunodepletion of du1- mutant extracts with this antiserum nearly eliminated SS activity. Two soluble SS activities were identified by electrophoretic fractionation, each of which correlated specifically with zSSI or DU1. Thus, DU1 and zSSI accounted for the great majority of soluble SS activity present in developing endosperm. The relative activity of the two isozymes did not change significantly during the starch biosynthetic period. DU1 and zSSI may be interdependent, because mutant extracts lacking DU1 exhibited a significant stimulation of the remaining SS activity.  (+info)