Serological reactions in Rhesus monkeys inoculated with the 17D strain of yellow fever virus. (57/339)

Haemagglutination-inhibition tests, which depend on the appearance of haemagglutination-inhibiting antibodies in the serum in virus infections, are in common use in the study of arthropod-borne diseases. This paper contains the results of an investigation into the appearance and pattern of haemagglutination-inhibiting antibodies in the serum of rhesus monkeys inoculated intracerebrally with the 17D strain of yellow fever virus during the testing of seed lots of yellow fever vaccine. These antibodies appeared on the tenth day after inoculation, and were still demonstrable four years later. In all of the eight monkeys tested complement-fixing and neutralizing antibodies against yellow fever antigens also developed, and in six out of the eight heterologous antigens developed.  (+info)

Neutralizing and haemagglutination-inhibiting antibodies to yellow fever 17 years after vaccination with 17D vaccine. (58/339)

The duration of immunity conferred by yellow fever vaccine is as yet undetermined. In this study the neutralizing and haemagglutination-inhibiting antibodies to yellow fever were investigated in 108 persons living in Pouso Alegre, Brazil, where yellow fever has never been reported. These persons had been vaccinated with 17D yellow fever vaccine between 27 December 1940 and 5 February 1941, but not again; and their antibody pattern was compared with that of 78 controls who had never been vaccinated. In the vaccinated group the majority had neutralizing and haemagglutination-inhibiting antibodies present in the serum, whereas in the unvaccinated group antibodies were all but completely absent. Heterologous antibodies to other viruses of Casal's Group B were also found, and the significance of this finding is discussed.  (+info)

Yellow fever vaccination in Malaya by subcutaneous injection and multiple puncture. Neutralizing antibody responses in persons with and without pre-existing antibody to related viruses. (59/339)

Because of the risk of introduction of yellow fever to South-East Asia, comparative studies were made of yellow fever vaccination in Malayans who had a high prevalence of antibody to related viruses and in volunteers without related antibody. The proportions of positive neutralizing antibody responses to subcutaneous vaccination with 17D vaccine were not significantly different between volunteers with and without heterologous antibody but the degree of antibody response was greater in those without. The ID(50) of 17D in both groups was about 5 mouse intracerebral LD(50). Multiple puncture vaccination with 17D gave a much lower response rate than subcutaneous vaccination in volunteers with heterologous antibody. In both groups subcutaneous doses of about 50 mouse intracerebral LD(50) gave larger antibody responses than higher doses. The neutralizing indices and analysis of results were calculated by a method based on the survival time of the mice. This method, which has advantages over that of Reed & Muench, is fully described in an annex to this paper.  (+info)

Chimeric live, attenuated vaccine against Japanese encephalitis (ChimeriVax-JE): phase 2 clinical trials for safety and immunogenicity, effect of vaccine dose and schedule, and memory response to challenge with inactivated Japanese encephalitis antigen. (60/339)

ChimeriVax-JE is a live, attenuated vaccine against Japanese encephalitis, using yellow fever (YF) 17D vaccine as a vector. In a double-blind phase 2 trial, 99 adults received vaccine, placebo, or YF 17D vaccine (YF-VAX). ChimeriVax-JE was well tolerated, with no differences in adverse events between treatment groups. Viremias resulting from administration of ChimeriVax-JE and YF-VAX were of short duration and low titer; 82 (94%) of 87 subjects administered graded doses (1.8-5.8 log(10)) of ChimeriVax-JE developed neutralizing antibodies. A second dose, administered 30 days later, had no booster effect. Previous inoculation with YF did not interfere with ChimeriVax-JE, but there was a suggestion (not statistically significant) that ChimeriVax-JE interfered with YF-VAX administered 30 days later. A separate study explored immunological memory both in subjects who had received ChimeriVax-JE 9 months before and in ChimeriVax-JE-naive subjects challenged with inactivated mouse-brain vaccine (JE-VAX). Anamnestic responses were observed in preimmune individuals. ChimeriVax-JE appears to be a safe vaccine that provides protective levels of neutralizing antibody after a single dose.  (+info)

Neuroadapted yellow fever virus 17D: determinants in the envelope protein govern neuroinvasiveness for SCID mice. (61/339)

A molecular clone of mouse-neuroadapted yellow fever 17D virus (SPYF-MN) was used to identify critical determinants of viral neuroinvasiveness in a SCID mouse model. Virus derived from this clone differs from nonneuroinvasive YF5.2iv virus at 29 nucleotide positions, encoding 13 predicted amino acid substitutions and 2 substitutions in the 3' untranslated region (UTR). The virulence determinants of SPYF-MN for SCID mice were identified by constructing and characterizing intratypic viruses in which the E protein of SPYF-MN was expressed in the YF5.2iv background (SPYF-E) or the E protein of YF5.2iv was expressed in the SPYF-MN background (YF5.2-E). SPYF-E caused lethal encephalitis in young adult SCID mice after intraperitoneal inoculation, with average survival times and tissue virus burdens resembling those of mice inoculated with the parental SPYF-MN virus. To define which domains of the E protein are involved in neuroinvasiveness, two viruses were tested in which the amino acid substitutions in domains I-II and III were segregated. This revealed that substitutions in domain III (residues 305, 326, and 380) were critical for the neuroinvasive phenotype, based on average survival times and tissue burdens of infectious virus. Comparison of growth properties of the various intratypic viruses in cell culture indicated that no inherent defects in replication efficiency were likely to account for the biological differences observed in these experiments. These findings demonstrate that the E protein is a critical factor for yellow fever virus neuropathogenesis in the SCID mouse model and that the neuroinvasive properties depend principally on functions contributed by domain III of this protein. To assess whether critical determinants for neuroinvasion of normal ICR mice by SPYF virus were also in the E protein, sequences of viruses recovered from brains of ICR mice succumbing to encephalitis with the parental SPYF virus were derived. No differences were found in the E protein; however, two substitutions were present in the 3' UTR compared to that of SPYF-MN, one of which is predicted to alter RNA secondary structure in this region. These findings suggest that the 3' UTR may also affect neuroinvasiveness of SPYF virus in the mouse model.  (+info)

Neurovirulence of yellow fever 17DD vaccine virus to rhesus monkeys. (62/339)

The yellow fever 17D virus is attenuated and used for human vaccination. Two of its substrains, 17D-204 and 17DD, are used for vaccine production. One of the remarkable properties of this vaccine is limited viral replication in the host but with significant dissemination of the viral mass, yielding a robust and long-lived neutralizing antibody response. The vaccine has excellent records of efficacy and safety and is cheap, used as a single dose, and there are well-established production methodology and quality control procedures which include the monkey neurovirulence test (MNTV). The present study aims at a better understanding of YF 17DD virus attenuation and immunogenicity in the MNVT with special emphasis on viremia, seroconversion, clinical and histological lesions scores, and their intrinsic variability across the tests. Several MNVTs were performed using the secondary seed lot virus 17DD 102/84 totaling 49 rhesus monkeys. Viremia was never higher than the accepted limits established in international requirements, and high levels of neutralizing antibodies were observed in all animals. None of the animals showed visceral lesions. We found that the clinical scores for the same virus varied widely across the tests. There was a direct correlation between the clinical scores in animals with clinical signs of encephalitis and a higher degree of central nervous system (CNS) histological lesions, with an increase of lesions in areas of the CNS such as the substantia nigra, nucleus caudatus, intumescentia cervicalis, and intumescentia ventralis. The histological scores were shown to be less prone to individual variations and had a more homogeneous value distribution among the tests. Since 17DD 102/84 seed virus has been used for human vaccine production and immunization for 16 years with the vaccine being safe and efficacious, it demonstrates that the observed variations across the MNVTs do not influence its effect on humans.  (+info)

A case of yellow fever in a brown howler (Alouatta fusca) in Southern Brazil. (63/339)

Many brown howlers (Alouatta fusca) have died in a 3-month period in a subtropical forest in Southern Brazil. One was examined after a systemic illness. According to clinical signs, and necropsy and histopathology findings, yellow fever virus (YFV) infection was suspected. Tissue sections from liver, kidney, and lymphoid organs were screened by immunohistochemistry for YFV antigens. Cells within those tissues stained positively with a polyclonal antibody against YFV antigens (1:1,600 dilution), and yellow fever was diagnosed for the first time in the brown howler in the area.  (+info)

High fidelity of yellow fever virus RNA polymerase. (64/339)

Three consecutive plaque purifications of four chimeric yellow fever virus-dengue virus (ChimeriVax-DEN) vaccine candidates against dengue virus types 1 to 4 were performed. The genome of each candidate was sequenced by the consensus approach after plaque purification and additional passages in cell culture. Our data suggest that the nucleotide sequence error rate for SP6 RNA polymerase used in the in vitro transcription step to initiate virus replication was as high as 1.34 x 10(-4) per copied nucleotide and that the error rate of the yellow fever virus RNA polymerase employed by the chimeras for genome replication in infected cells was as low as 1.9 x 10(-7) to 2.3 x 10(-7). Clustering of beneficial mutations that accumulated after multiple virus passages suggests that the N-terminal part of the prM protein, a specific site in the middle of the E protein, and the NS4B protein may be essential for nucleocapsid-envelope interaction during flavivirus assembly.  (+info)