Gliding flight: drag and torque of a hawk and a falcon with straight and turned heads, and a lower value for the parasite drag coefficient. (17/444)

Raptors - falcons, hawks and eagles in this study - such as peregrine falcons (Falco peregrinus) that attack distant prey from high-speed dives face a paradox. Anatomical and behavioral measurements show that raptors of many species must turn their heads approximately 40 degrees to one side to see the prey straight ahead with maximum visual acuity, yet turning the head would presumably slow their diving speed by increasing aerodynamic drag. This paper investigates the aerodynamic drag part of this paradox by measuring the drag and torque on wingless model bodies of a peregrine falcon and a red-tailed hawk (Buteo jamaicensis) with straight and turned heads in a wind tunnel at a speed of 11.7 m s(-)(1). With a turned head, drag increased more than 50 %, and torque developed that tended to yaw the model towards the direction in which the head pointed. Mathematical models for the drag required to prevent yawing showed that the total drag could plausibly more than double with head-turning. Thus, the presumption about increased drag in the paradox is correct. The relationships between drag, head angle and torque developed here are prerequisites to the explanation of how a raptor could avoid the paradox by holding its head straight and flying along a spiral path that keeps its line of sight for maximum acuity pointed sideways at the prey. Although the spiral path to the prey is longer than the straight path, the raptor's higher speed can theoretically compensate for the difference in distances; and wild peregrines do indeed approach prey by flying along curved paths that resemble spirals. In addition to providing data that explain the paradox, this paper reports the lowest drag coefficients yet measured for raptor bodies (0.11 for the peregrine and 0.12 for the red-tailed hawk) when the body models with straight heads were set to pitch and yaw angles for minimum drag. These values are markedly lower than value of the parasite drag coefficient (C(D,par)) of 0.18 previously used for calculating the gliding performance of a peregrine. The accuracy with which drag coefficients measured on wingless bird bodies in a wind tunnel represent the C(D,par) of a living bird is unknown. Another method for determining C(D,par) selects values that improve the fit between speeds predicted by mathematical models and those observed in living birds. This method yields lower values for C(D,par) (0.05-0.07) than wind tunnel measurements, and the present study suggests a value of 0.1 for raptors as a compromise.  (+info)

Upwelling intensification as part of the Pliocene-Pleistocene climate transition. (18/444)

A deep-sea sediment core underlying the Benguela upwelling system off southwest Africa provides a continuous time series of sea surface temperature (SST) for the past 4.5 million years. Our results indicate that temperatures in the region have declined by about 10 degrees C since 3.2 million years ago. Records of paleoproductivity suggest that this cooling was associated with an increase in wind-driven upwelling tied to a shift from relatively stable global warmth during the mid-Pliocene to the high-amplitude glacial-interglacial cycles of the late Quaternary. These observations imply that Atlantic Ocean surface water circulation was radically different during the mid-Pliocene.  (+info)

Evaluation of the 1996 NRC beef model under western Canadian environmental conditions. (19/444)

Two feedlot trials were conducted to evaluate the 1996 NRC beef model under western Canadian conditions. In the first trial, 144 Charolais- (304.6 +/- 16.3 kg) and 144 Hereford- (295.1 +/- 20.8 kg) cross steers were used, whereas the second trial used 88 Angus- (289.7 +/- 15.0 kg), 88 Charolais- (299.8 +/- 17.9 kg), and 88 Hereford- (291.1 +/- 20.9 kg) cross steers. Diets were based on barley silage, rolled barley grain, canola meal, and cereal straw and were analyzed according to the 1996 NRC methodologies. Animal performance and environmental data were collected for 24 pens of steers per trial for the backgrounding and finishing periods. Levels 1 and 2 of the 1996 NRC model were used to generate predictions of DMI and ADG for each pen. Results showed that actual finishing DMI was accurately predicted for Trial 1 and for the combined trials but not for Trial 2. Predicted ADG was lower (P < 0.05) than actual ADG for all feeding periods except Level 1 of the Trial 1 finishing period. All ADG residuals were significant (P < 0.05), indicating inaccurate prediction of ADG in all feeding periods. The 1996 NRC model consistently predicted that protein was not limiting gain. Further investigations and model refinement regarding animal energy requirements under cold weather conditions and effects of limit feeding are required to increase the accuracy of the 1996 NRC model in predicting animal performance.  (+info)

Flexibility in flight behaviour of barn swallows (Hirundo rustica) and house martins (Delichon urbica) tested in a wind tunnel. (20/444)

The flight behaviour of barn swallows (Hirundo rustica) and house martins (Delichon urbica) was tested in a wind tunnel at 15 combinations of flight angles and speeds. In contrast to that of most other small passerines, the intermittent flight of hirundines rarely consists of regular patterns of flapping and rest phases. To vary mechanical power output, both species used intermittent flight, controlling the number of single, pulse-like wingbeats per unit time. House martins in descent tended to concentrate their wingbeats into bursts and performed true gliding flight during rest phases. Barn swallows mainly performed partial bounds during brief interruptions of upstrokes, which they progressively prolonged with decreasing flight angle. Thus, identification of distinct flapping phases to calculate wingbeat frequencies was not feasible. Instead, an effective wingbeat frequency for flight intervals of 20 s, including partial bounds, was introduced. The effective wingbeat frequencies of house martins (N=3) ranged from 2 to 10.5 s(-1), those of barn swallows (N=4) from 2.5 to 8.5 s(-1). In both hirundine species, effective wingbeat frequency was found to decrease almost linearly with decreasing flight angle. With changes in air speed, wingbeat frequency varied according to a U-shaped curve, suggesting a minimum power speed of roughly 9 m s(-1). The duration of the down- and upstrokes varied systematically depending on flight angle and air speed.  (+info)

Confronting the winds: orientation and flight behaviour of roosting swifts, Apus apus. (21/444)

Swifts, Apus apus, spend the night aloft and this offers an opportunity to test the degree of adaptability of bird orientation and flight to different ecological situations. We predicted the swifts' behaviour by assuming that they are adapted to minimize energy expenditure during the nocturnal flight and during a compensatory homing flight if they become displaced by wind. We tested the predictions by recording the swifts' altitudes, speeds and directions under different wind conditions with tracking radar; we found an agreement between predictions and observations for orientation behaviour, but not for altitude and speed regulation. The swifts orientated consistently into the head wind, with angular concentration increasing with increasing wind speed. However, contrary to our predictions, they did not select altitudes with slow or moderate winds, nor did they increase their airspeed distinctly when flying into strong head winds. A possible explanation is that their head-wind orientation is sufficient to keep nocturnal displacement from their home area within tolerable limits, leaving flight altitude to be determined by other factors (correlated with temperature), and airspeed to show only a marginal increase in strong winds. The swifts were often moving "backwards", heading straight into the wind but being overpowered by wind speeds exceeding their airspeed. The regular occurrence of such flights is probably uniquely associated with the swifts' remarkable habit of roosting on the wing.  (+info)

Aeolian dust in Colorado Plateau soils: nutrient inputs and recent change in source. (22/444)

Aeolian dust (windblown silt and clay) is an important component in arid-land ecosystems because it may contribute to soil formation and furnish essential nutrients. Few geologic surfaces, however, have been characterized with respect to dust-accumulation history and resultant nutrient enrichment. We have developed a combination of methods to identify the presence of aeolian dust in arid regions and to evaluate the roles of this dust in ecosystem processes. Unconsolidated sandy sediment on isolated surfaces in the Canyonlands region of the Colorado Plateau differs greatly in mineralogical and chemical composition from associated bedrock, mainly aeolian sandstone. Detrital magnetite in the surficial deposits produces moderately high values of magnetic susceptibility, but magnetite is absent in nearby bedrock. A component of the surficial deposits must be aeolian to account for the abundance of magnetite, which formed originally in far-distant igneous rocks. Particle-size analysis suggests that the aeolian dust component is typically as much as 20-30%. Dust inputs have enriched the sediments in many elements, including P, Mg, Na, K, and Mo, as well as Ca, at sites where bedrock lacks calcite cement. Soil-surface biologic crusts are effective dust traps that apparently record a change in dust sources over the past several decades. Some of the recently fallen dust may result from human disturbance of land surfaces that are far from the Canyonlands, such as the Mojave Desert. Some land-use practices in the study area have the potential to deplete soil fertility by means of wind-erosion removal of aeolian silt.  (+info)

Wind-induced plant motion immediately increases cytosolic calcium. (23/444)

Wind is one of the most unusual and more dramatic of the environmental signals to modify plant development. Wind-stimulated crops are also known to experience considerable reductions in growth and subsequent yield. There is at present no experimental data to suggest how wind signals are perceived and transduced by plant cells. We have genetically transformed Nicotiana plumbaginifolia to express aequorin and thus produced luminous plants that directly report cytosolic calcium by emitting blue light. With these plants we have found wind stimulation to cause immediate increases in cytosolic calcium and our evidence, based on the use of specific inhibitors, suggests that this calcium is mobilized from organelle sources. Our data further suggest that wind-induced movement of tissues, by mechanically stimulating and stressing constituent plant cells, is responsible for the immediate elevation of cytosolic calcium; increases occur only when the plant tissue is actually in motion. Repeated wind stimulation renders the cells refractory to further calcium signaling but responsiveness is rapidly recovered when stimulation is subsequently diminished. Our data suggest that mechanoperception in plant cells may possibly be transduced through intracellular calcium. Since mechanoperception and transduction are considered crucial to plant morphogenesis, our observations suggest that calcium could be central in the control and generation of plant form.  (+info)

Effects of mechanical signaling on plant cell cytosolic calcium. (24/444)

Mechanical signals are important influences on the development and morphology of higher plants. Using tobacco transformed with the Ca(2+)-sensitive luminescent protein aequorin, we recently reported the effects of mechanical signals of touch and wind on the luminescence and thus intracellular calcium of young seedlings. When mesophyll protoplasts are isolated from these transgenic tobacco plants and mechanically stimulated by swirling them in solution, cytoplasmic Ca2+ increases immediately and transiently up to 10 microM, and these transients are unaffected by an excess of EGTA in the medium. The size of the transient effect is related to the strength of swirling. Epidermal strips isolated from transgenic tobacco leaves and containing only viable guard cells and trichomes also respond to the strength of swirling in solution and can increase their cytoplasmic Ca2+ transiently up to 10 microM. Finally, the moss Physcomitrella patens containing recombinant aequorin exhibits transient increases in cytoplasmic Ca2+ up to 5 microM when swirled in solution. This effect is strongly inhibited by ruthenium red. Our data indicate that the effect of mechanical stimulation can be found in a number of different cell types and in a lower plant as well as tobacco and suggest that mechanoperception and the resulting increase in cytoplasmic Ca2+ may be widespread.  (+info)