Rotavirus vaccine for the prevention of rotavirus gastroenteritis among children. Recommendations of the Advisory Committee on Immunization Practices (ACIP). (25/3369)

These recommendations represent the first statement by the Advisory Committee on Immunization Practices (ACIP) on the use of an oral, live rotavirus vaccine licensed by the Food and Drug Administration on August 31, 1998, for use among infants. This report reviews the epidemiology of rotavirus, describes the licensed rotavirus vaccine, and makes recommendations regarding its use for the routine immunization of infants in the United States. These recommendations are based on estimates of the disease burden of rotavirus gastroenteritis among children in the United States and on the results of clinical trials of the vaccine. Rotavirus affects virtually all children during the first 5 years of life in both developed and developing countries, and rotavirus infection is the most common cause of severe gastroenteritis in the United States and worldwide. In the United States, rotavirus is a common cause of hospitalizations, emergency room visits, and outpatient clinic visits, and it is responsible for considerable health-care costs. Because of this large burden of disease, several rotavirus vaccines have been developed. One of these vaccines - an oral, live, tetravalent, rhesus-based rotavirus vaccine (RRV-TV) -- was found to be safe and efficacious in clinical trials among children in North America, South America, and Europe and on the basis of these studies is now licensed for use among infants in the United States. The vaccine is an oral, live preparation that should be administered to infants between the ages of 6 weeks and 1 year. The recommended schedule is a three-dose series, with doses to be administered at ages 2, 4, and 6 months. The first dose may be administered from the ages of 6 weeks to 6 months; subsequent doses should be administered with a minimum interval of 3 weeks between any two doses. The first dose should not be administered to children aged > or =7 months because of an increased rate of febrile reactions after the first dose among older infants. Second and third doses should be administered before the first birthday. Implementation of these recommendations in the United States should prevent most physician visits for rotavirus gastroenteritis and at least two-thirds of hospitalizations and deaths related to rotavirus.  (+info)

Protective efficacy against respiratory syncytial virus following murine neonatal immunization with BBG2Na vaccine: influence of adjuvants and maternal antibodies. (26/3369)

Alum-adsorbed BBG2Na, a recombinant vaccine derived in part from the respiratory syncytial virus (RSV) subgroup A G protein, induced moderate antibody titers after 1 immunization in 1-week-old mice but conferred complete lung protection upon RSV challenge. The anti-BBG2Na IgG1-IgG2a neonatal isotype profile was suggestive of dominant Th2 responses compared with those in adults. Formulation of BBG2Na with a Th1-driving adjuvant efficiently shifted neonatal responses toward a more balanced and adultlike IgG1-IgG2a profile without compromising its protective efficacy. BBG2Na-induced protective immunity was maintained even after early life immunization in the presence of high titers of maternal antibodies. Under these conditions, the protective efficacy (86%-100%) reflected the high capacity of the nonglycosylated G2Na immunogen to escape inhibition by RSV-A-induced maternal antibodies. Thus, immunization with BBG2Na protected against viral challenge despite neonatal immunologic immaturity and the presence of maternal antibodies, two major obstacles to neonatal RSV vaccine development.  (+info)

Comparison of the immunogenicity and efficacy of a replication-defective vaccinia virus expressing antigens of human parainfluenza virus type 3 (HPIV3) with those of a live attenuated HPIV3 vaccine candidate in rhesus monkeys passively immunized with PIV3 antibodies. (27/3369)

Two parainfluenza virus type 3 (PIV3) vaccine candidates-cp45, a live attenuated derivative of the JS wild type (wt), and a replication-defective vaccinia virus recombinant expressing the hemagglutinin-neuraminidase or fusion glycoprotein of human PIV3 (modified vaccinia virus Ankara [MVA]/PIV3 recombinants)-were evaluated in rhesus monkeys to determine whether successful immunization could be achieved in the presence of passively transferred PIV3 antibodies. The cp45 virus, administered intranasally (in) and intratracheally (it) in the presence of high levels of PIV3 antibodies, replicated efficiently in the nasopharynx and protected against challenge with wt human PIV3. The MVA recombinants, administered in, it, and intramuscularly in the absence of passive antibody, conferred protection against replication of PIV3 wt challenge virus, but this was largely abrogated when immunization occurred in the presence of passive antibodies. Because immunization for the prevention of HPIV3 disease must occur in early infancy when maternal antibodies are present, the live attenuated cp45 virus continues to be a promising vaccine candidate for this age group.  (+info)

Highly efficient induction of protective immunity by a vaccinia virus vector defective in late gene expression. (28/3369)

Vaccinia viruses defective in the essential gene coding for the enzyme uracil DNA glycosylase (UDG) do not undergo DNA replication and do not express late genes in wild-type cells. A UDG-deficient vaccinia virus vector carrying the tick-borne encephalitis (TBE) virus prM/E gene, termed vD4-prME, was constructed, and its potential as a vaccine vector was evaluated. High-level expression of the prM/E antigens could be demonstrated in infected complementing cells, and moderate levels were found under noncomplementing conditions. The vD4-prME vector was used to vaccinate mice; animals receiving single vaccination doses as low as 10(4) PFU were fully protected against challenge with high doses of virulent TBE virus. Single vaccination doses of 10(3) PFU were sufficient to induce significant neutralizing antibody titers. With the corresponding replicating virus, doses at least 10-fold higher were needed to achieve protection. The data indicate that late gene expression of the vaccine vector is not required for successful vaccination; early vaccinia virus gene expression induces a potent protective immune response. The new vaccinia virus-based defective vectors are therefore promising live vaccines for prophylaxis and cancer immunotherapy.  (+info)

Heterotypic protection and induction of a broad heterotypic neutralization response by rotavirus-like particles. (29/3369)

The recognition that rotaviruses are the major cause of life-threatening diarrheal disease and significant morbidity in young children has focused efforts on disease prevention and control of these viruses. Although the correlates of protection in children remain unclear, some studies indicate that serotype-specific antibody is important. Based on this premise, current live attenuated reassortant rotavirus vaccines include the four predominant serotypes of virus. We are evaluating subunit rotavirus vaccines, 2/6/7-VLPs and 2/4/6/7-VLPs, that contain only a single VP7 of serotype G1 or G3. In mice immunized parenterally twice, G3 virus-like particles (VLPs) induced a homotypic, whereas G1 VLPs induced a homotypic and heterotypic (G3) serum neutralizing immune response. Administration of three doses of G1 or G3 VLPs induced serum antibodies that neutralized five of seven different serotype test viruses. The inclusion of VP4 in the VLPs was not essential for the induction of heterotypic neutralizing antibody in mice. To confirm these results in another species, rabbits were immunized parenterally with two doses of 2/4/6/7-VLPs containing a G3 or G1 VP7, sequentially with G3 VLPs followed by G1 (G3/G1) VLPs, or with live or psoralen-inactivated SA11. High-titer homotypic serum neutralizing antibody was induced in all rabbits, and low-level heterotypic neutralizing antibody was induced in a subset of rabbits. The rabbits immunized with the G1 or G3/G1 VLPs in QS-21 were challenged orally with live G3 ALA rotavirus. Protection levels were similar in rabbits immunized with homotypic G3 2/4/6/7-VLPs, heterotypic G1 2/4/6/7-VLPs, or G3/G1 2/4/6/7-VLPs. Therefore, G1 2/4/6/7-VLPs can induce protective immunity against a live heterotypic rotavirus challenge in an adjuvant with potential use in humans. Following challenge, broad serum heterotypic neutralizing antibody responses were detected in rabbits parenterally immunized with G1, G3/G1, or G3 VLPs but not with SA11. Immunization with VLPs may provide sufficient priming of the immune system to induce protective anamnestic heterotypic neutralizing antibody responses upon subsequent rotavirus infection. Therefore, a limited number of serotypes of VLPs may be sufficient to provide a broadly protective subunit vaccine.  (+info)

Rescue of Newcastle disease virus from cloned cDNA: evidence that cleavability of the fusion protein is a major determinant for virulence. (30/3369)

A full-length cDNA clone of Newcastle disease virus (NDV) vaccine strain LaSota was assembled from subgenomic overlapping cDNA fragments and cloned in a transcription plasmid between the T7 RNA polymerase promoter and the autocatalytic hepatitis delta virus ribozyme. Transfection of this plasmid into cells that were infected with a recombinant fowlpoxvirus that expressed T7 RNA polymerase, resulted in the synthesis of antigenomic NDV RNA. This RNA was replicated and transcribed by the viral NP, P, and L proteins, which were expressed from cotransfected plasmids. After inoculation of the transfection supernatant into embryonated specific-pathogen-free eggs, infectious virus derived from the cloned cDNA was recovered. By introducing three nucleotide changes in the cDNA, we generated a genetically tagged derivative of the LaSota strain in which the amino acid sequence of the protease cleavage site (GGRQGR downward arrowL) of the fusion protein F0 was changed to the consensus cleavage site of virulent NDV strains (GRRQRR downward arrowF). Pathogenicity tests in day-old chickens showed that the strain derived from the unmodified cDNA was completely nonvirulent (intracerebral pathogenicity index [ICPI] = 0.00). However, the strain derived from the cDNA in which the protease cleavage site was modified showed a dramatic increase in virulence (ICPI = 1.28 out of a possible maximum of 2.0). Pulse-chase labeling of cells infected with the different strains followed by radioimmunoprecipitation of the F protein showed that the efficiency of cleavage of the F0 protein was greatly enhanced by the amino acid replacements. These results demonstrate that genetically modified NDV can be recovered from cloned cDNA and confirm the supposition that cleavage of the F0 protein is a key determinant in virulence of NDV.  (+info)

The major attenuating mutations of the respiratory syncytial virus vaccine candidate cpts530/1009 specify temperature-sensitive defects in transcription and replication and a non-temperature-sensitive alteration in mRNA termination. (31/3369)

The live-attenuated respiratory syncytial virus vaccine candidate cpts530/1009 was previously shown to contain two separate amino acid changes in the L protein, mutations 530 and 1009 (Phe-521-->Leu and Met-1169-->Val, respectively, according to the amino acid sequence of the L protein). Each mutation independently specifies temperature-sensitive (ts) and attenuation phenotypes. In this study, we examined the effects of these mutations on transcription and RNA replication, using complete infectious recombinant virus as well as a plasmid-based minireplicon system, the latter under conditions in which effects on replication and transcription are uncoupled. In comparison with recombinant wild-type virus, the 530 and 1009 viruses were partially restricted at 37 degrees C for RNA replication, mRNA synthesis, and virus growth. The 1009 virus was partially restricted for RNA synthesis and virus growth even at 32 degrees C, which suggested that the 1009 mutation has a non-ts component in addition to the ts component. Interestingly, the synthesis of polycistronic readthrough mRNAs was elevated 1.6- to 3.8-fold for the 1009 virus, and this defect was non-ts. Studies with the minigenome system showed that the 530 and 1009 mutations each directly affect both replication and transcription, that the effect on replication was marginally greater than on transcription for the 530 mutation, and that the increase in readthrough mRNA associated with the 1009 mutation also was observed with the minigenome system.  (+info)

Evidence of high-frequency genomic reassortment of group A rotavirus strains in Bangladesh: emergence of type G9 in 1995. (32/3369)

We characterized 1,534 rotavirus (RV) strains collected in Bangladesh from 1992 to 1997 to assess temporal changes in G type and to study the most common G and P types using reverse transcription-PCR, oligonucleotide probe hybridization, and monoclonal antibody-based enzyme immunoassay. Results from this study combined with our previous findings from 1987 to 1991 (F. Bingnan et al., J. Clin. Microbiol. 29:862-868, 1991, and L. E. Unicomb et al., Arch. Virol. 132:201-208, 1993) (n = 2,515 fecal specimens) demonstrated that the distribution of the four major G types varied from year to year, types G1 to G4 constituted 51% of all strains tested (n = 1,364), and type G4 was the most prevalent type (22%), followed by type G2 (17%). Of 351 strains tested for both G and P types, three globally common types, type P[8], G1, type P[4], G2, and type P[8], G4, comprised 45% (n = 159) of the strains, although eight other strains were circulating during the study period. Mixed G and/or P types were found in 23% (n = 79) of the samples tested. Type G9 RVs that were genotype P[6] and P[8] with both long and short electrophoretic patterns emerged in 1995. The finding of five different genotypes among G9 strains, of which three were frequently detected, suggests that they may have an unusual propensity for reassortment that exceeds that found among the common G types. We also detected antigenic changes in serotypes G2 and G4 over time, as indicated by the loss of reactivity with standard typing monoclonal antibodies. Our data suggest that a vaccine must provide protection against type G9 RVs as well as against the four major G types because G9 strains constituted 16% (n = 56) of the typeable RV strains and have predominated since 1996.  (+info)