Pneumococcal conjugate vaccine primes for polysaccharide-inducible IgG2 antibody response in children with recurrent otitis media acuta. (1/586)

Children with frequent recurrent episodes of otitis media may have a deficient IgG2 antibody response to polysaccharide antigens. Five otitis-prone children were vaccinated with heptavalent pneumococcal conjugate vaccine. While all had an IgG1 antibody response to all pneumococcal serotypes included in the conjugate vaccine, the IgG2 response, especially to serotypes 6B, 9V, 19F, and 23F, was poor. However, vaccination with a 23-valent polysaccharide vaccine 6 months after conjugate vaccination induced an 11.5- to 163-fold increase in IgG2 anti-polysaccharide antibody titers. Thus, an IgG2 polysaccharide antibody deficiency can be overcome by priming with a pneumococcal conjugate vaccine followed by a booster with a polyvalent polysaccharide vaccine.  (+info)

Humoral immune responses to Neisseria meningitidis in children. (2/586)

An understanding of the nature of immunity to serogroup B meningococci in childhood is necessary in order to establish the reasons for poor responses to candidate vaccines in infancy. We sought to examine the nature of humoral immune responses following infection in relation to age. Serum bactericidal activity was poor in children under 12 months of age despite recent infection with Neisseria meningitidis. The highest levels of bactericidal activity were seen in children over 10 years of age. However, infants produced levels of total immunoglobulin G (IgG) and IgG subclass antibodies similar to those in older children in a meningococcal enzyme-linked immunosorbent assay. Most antibody was of the IgG1 and IgG3 subclasses. This striking age dependency of bactericidal antibody response following infection is not apparently due to failure of class switching in infants but might be due to qualitative differences in antibody specificity or affinity.  (+info)

Cellular immune responses to Neisseria meningitidis in children. (3/586)

There is an urgent need for effective vaccines against serogroup B Neisseria meningitidis. Current experimental vaccines based on the outer membrane proteins (OMPs) of this organism provide a measure of protection in older children but have been ineffective in infants. We postulated that the inability of OMP vaccines to protect infants might be due to age-dependent defects in cellular immunity. We measured proliferation and in vitro production of gamma interferon (IFN-gamma), tumor necrosis factor alpha, and interleukin-10 (IL-10) in response to meningococcal antigens by peripheral blood mononuclear cells (PBMCs) from children convalescing from meningococcal disease and from controls. After meningococcal infection, the balance of cytokine production by PBMCs from the youngest children was skewed towards a TH1 response (low IL-10/IFN-gamma ratio), while older children produced more TH2 cytokine (higher IL-10/IFN-gamma ratio). There was a trend to higher proliferative responses by PBMCs from older children. These responses were not influenced by the presence or subtype of class 1 (PorA) OMP or by the presence of class 2/3 (PorB) or class 4 OMP. Even young infants might be expected to develop adequate cellular immune responses to serogroup B N. meningitidis vaccines if a vaccine preparation can be formulated to mimic the immune stimulus of invasive disease, which may include stimulation of TH2 cytokine production.  (+info)

Meningococcal serogroup C conjugate vaccine is immunogenic in infancy and primes for memory. (4/586)

The safety, immunogenicity, and immunologic priming of 2 dosages (2 microgram or 10 microgram) of a meningococcal C oligosaccharide-CRM197 conjugate vaccine was evaluated in 114 infants vaccinated at ages 2, 3, and 4 months. Antibody persistence and response to boosting with 10 microgram of meningococcal C polysaccharide were assessed. The meningococcal conjugate vaccine produced fewer local reactions than concurrent routine immunizations. Total serogroup C-specific immunoglobulin geometric mean concentration (GMC) increased from 0.3 microgram/mL before vaccination to 13.1 microgram/mL at age 5 months. Serum bactericidal antibody (SBA) geometric mean titers (GMTs) rose from <1:4 to 1:1057 at 5 months and fell by 14 months to 1:19. Following boosting, anti-C-specific immunoglobulin GMC rose to 15.9 microgram/mL and SBA GMT to 1:495. Antibody responses in the 10-microgram dose cohort were significantly higher at 5 months (P<.01) than in the 2-microgram dose cohort but were lower after polysaccharide boosting (P=.02). This meningococcal conjugate vaccine was well tolerated and immunogenic and induced immunologic memory in infants.  (+info)

Pneumococcal capsular polysaccharide preparations may contain non-C-polysaccharide contaminants that are immunogenic. (5/586)

We measured the capacity to opsonize Streptococcus pneumoniae serotype 6B and estimated the concentration of immunoglobulin G anti-6B capsular polysaccharide (PS) antibodies in 25 pre- and postimmune sera from adults immunized with a pneumococcal PS vaccine. We first studied two postvaccination serum samples displaying less opsonophagocytic capacity than expected. The majority of anti-6B antibodies in the two samples reacted with the capsular PSs of several unrelated serotypes (2, 4, 9V, 19F, and 23F) and with the lysate of noncapsulated S. pneumoniae bacteria but not with C-PS. The non-type-specific antibodies accounted for at least one-half of anti-6B antibodies in 40% of prevaccination sera and 10% of postvaccination sera from adults. The non-type-specific antibodies could be demonstrated in the enzyme-linked immunosorbent assays (ELISAs) for pneumococcal antibodies to other serotypes (4, 9V, 18C, 19F, and 23F). The nonspecific antibodies appear to bind a contaminant(s) in the current preparations of capsular PS. ELISA for antibodies to pneumococcal capsules may not be serotype specific for some samples.  (+info)

Immune response to pneumococcal conjugate and polysaccharide vaccines in otitis-prone and otitis-free children. (6/586)

We compared responses to pneumococcal conjugate and polysaccharide vaccines in 48 otitis-free and 64 otitis-prone children. Pre- and postimmunization concentrations of antibodies to pneumococcal serotypes 6B, 14, 19F, and 23F were measured by enzyme-linked immunosorbent assay. Postimmunization mean concentrations of antibodies to all four serotypes were significantly higher for children receiving conjugate vaccine than for those receiving polysaccharide vaccine; the difference in responses was primarily due to a better response to conjugate vaccine in the otitis-prone group. Significantly higher postimmunization concentrations of antibodies to all four serotypes and to one of the four serotypes were found in otitis-prone children and otitis-free children who received conjugate vaccine, respectively. Pneumococcal conjugate vaccine has the potential to reduce the incidence of disease due to vaccine serotypes, even among children with recurrent otitis media.  (+info)

Fcgamma receptor polymorphisms determine the magnitude of in vitro phagocytosis of Streptococcus pneumoniae mediated by pneumococcal conjugate sera. (7/586)

Fcgamma receptors show two genetically determined polymorphisms: the biallelic FcgammaRIIa-R131 and -H131 polymorphism and the NA1/NA2 FcgammaIIIb polymorphism. Using 10 pre- and postconjugate vaccination sera from adults, we analyzed in vitro phagocytic capacities of three different combinations of polymorphonuclear leukocyte FcgammaR allotypes: those homozygous for the H131 and NA1 allotype, those homozygous for the R131 and NA2 allotype, and those heterozygous for both receptors. For pre- and postvaccination sera, mean phagocytosis levels for the homozygous H131/NA1 allotype were 4 -fold higher than for the homozygous R131/NA2 allotype. There was a strong and significant correlation between IgG2 ELISA antibody titers and phagocytosis levels for the homozygous H131/NA1 Fcgamma receptor allotype and the heterozygous allotype but not for the homozygous R131/NA2 allotype. There was no relation between IgG1 ELISA titer and phagocytosis level. Apparently the IgG2 antibodies induced are functionally the most important. This may explain the large effect of Fcgamma receptor polymorphisms on in vitro phagocytosis of pneumococci mediated by conjugate antisera.  (+info)

The epidemiological impact of antimeningococcal B vaccination in Cuba. (8/586)

The incidence of invasive meningococcal disease (IMD) before (1984-1988) and after (1989-1994), a nationwide intervention with VA-MENGOC-BC vaccination started in 1989, was compared. The prevaccination period incidence density (ID> 8.8/10(5) year-person) was higher than the postvaccination ID (ID< 6.5/10(5) year-person). The percentage proportional differences from the start to the end of each period of ID in the vaccinal period was higher (87%) than the prevaccinal (37%) with significant differences among vaccinated groups (< 25 years old). A break-point (Chow test) was confirmed by the decrease in the ID between 1989 and 1990 in children under 1 year old, 5-9, 10-14, 15-19 and 50-54 years. Comparison of ID using maps showed a decrease in IMD in all municipalities during the postvaccination period. These findings support the epidemiological impact of VA-MENGOC-BC vaccination in the reduction of IMD morbidity.  (+info)