Heparin inhibits proliferation of myometrial and leiomyomal smooth muscle cells through the induction of alpha-smooth muscle actin, calponin h1 and p27. (1/1519)

Mast cells are widely distributed in human tissues, including the human uterus. However, the function of mast cells in uterine smooth muscle has not been clearly established. Mast cells possess secretory granules containing such substances as heparin, serotonin, histamine and many cytokines. To help establish the role of mast cells in the human myometrium, the action of heparin was investigated using smooth muscle cells (SMC) from normal myometrium and from leiomyoma. The proliferation of cultured myometrial and leiomyomal SMC was inhibited by heparin treatment. Flow cytometric analysis showed that the population in the G1 phase of the cell cycle increased under heparin treatment. Western blotting analysis showed that markers of SMC differentiation such as alpha-smooth muscle actin (alpha-SMA), calponin h1 and cyclin-dependent kinase inhibitor p27 were induced by heparin, whereas cell-cycle-related gene products from the G1 phase of the cell cycle, such as cyclin E and cdk2, were not changed. Taken together, these results indicate that heparin inhibits the proliferation of myometrial and leiomyomal SMC through the induction of alpha-SMA, calponin h1 and p27. We suggest that heparin from mast cells may induce differentiation in uterine SMC and may influence tissue remodelling and reconstruction during physiological and pathophysiological events.  (+info)

Immunosuppressant deoxyspergualin-induced inhibition of cell proliferation is accompanied with an enhanced reduction of tetrazolium salt. (2/1519)

Deoxyspergualin (DSG) has both antitumor and immunosuppressive activities. We explored the mechanism of DSG activities using an aqueous soluble analogue, methyldeoxyspergualin (MeDSG) for in vitro culture studies. It is known that DSG has inhibitory effects on cell proliferation, and we also observed that MeDSG inhibited [3H]-thymidine incorporation by rapidly dividing murine T cell hybridomas. However, when tetrazolium (MTT) colorimetric assay was adopted to evaluate its inhibitory effects on cell proliferation, MeDSG induced an enhanced MTT reduction. When we examined whether these results were applicable to the actively dividing cells of other origins than T cells, similar effects were seen with Raji cells, J774.1 cells and NIH3T3 cells. N-30, another analogue which was capable of suppressing anti-SRBC antibody production in vivo, also induced inhibition of cell growth and an enhanced MTT reduction. In contrast, the analogue which failed to prevent the antibody production, neither enhanced MTT reduction nor inhibited cell proliferation. Our results demonstrated that the ability to generate MTT formazan in dividing cells is a common property among, DSG analogue with the immunosuppressive and antiproliferative activities.  (+info)

Reactive oxygen species-induced apoptosis and necrosis in bovine corneal endothelial cells. (3/1519)

PURPOSE: The loss of corneal endothelial cells associated with aging and possibly other causes has been speculated to be related to exposure to reactive oxygen species (ROS). The current study was conducted to investigate, by use of photosensitizers, the underlying mechanisms involved in the death of bovine corneal endothelial cells (BCENs) caused by ROS. METHODS: BCEN cells in primary culture were treated with a photosensitizer (riboflavin or rose bengal) with light exposure. The patterns of cell damage and death were assessed using an acridine orange-ethidium bromide differential staining method, TdT-mediated dUTP nick-end labeling (TUNEL) assay, and transmission electron microscopy. The cytotoxicity was assayed by mitochondrial function using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) testing. Antioxidants, including catalase, L-histidine, salicylic acid, and superoxide dismutase, were used to determine the types of ROS involved. Activation of nuclear factor (NF)-kappaB was examined by fluorescent immunocytochemistry with anti-p65 antibody. RESULTS: Light-irradiated riboflavin or rose bengal resulted in a significant decrease in viability of BCEN cells. Chromosomal condensation and fragmentation were observed in apoptotic cells, and membrane lysis and damage of cell ultrastructures were observed in necrotic cells. Riboflavin induced apoptosis at 30 minutes and thereafter and induced necrosis after 2 hours. Rose bengal was shown to cause similar effects within half the time required for the effects of riboflavin. Catalase and salicylic acid were found to provide protection for BCENs from cytotoxic effects of riboflavin, and L-histidine was found to protect BCENs from cytotoxicity induced by rose bengal. Kinetic studies using immunocytochemistry showed that NF-kappaB was translocated into the nucleus within 15 minutes and 30 minutes after treatment with rose bengal and riboflavin, respectively. CONCLUSIONS: The cytotoxic effects of photo-irradiated riboflavin and rose bengal are shown to be mediated by two distinct but parallel pathways, one leading to apoptosis and the other to necrosis. Possible involvement of NF-kappaB in cell death is suggested. These findings provide potential leads for future investigation into the molecular mechanisms of loss of corneal endothelial cells related to aging, oxidative stress, and possibly other similar causes.  (+info)

Semiautomated metabolic staining assay for Bacillus cereus emetic toxin. (4/1519)

This paper describes a specific, sensitive, semiautomated, and quantitative Hep-2 cell culture-based 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay for Bacillus cereus emetic toxin. Of nine Bacillus, Brevibacillus, and Paenibacillus species assessed for emetic toxin production, only B. cereus was cytotoxic.  (+info)

Sensitive detection of Escherichia coli O157:H7 in food and water by immunomagnetic separation and solid-phase laser cytometry. (5/1519)

Rapid, direct methods are needed to assess active bacterial populations in water and foods. Our objective was to determine the efficiency of bacterial detection by immunomagnetic separation (IMS) and the compatibility of IMS with cyanoditolyl tetrazolium chloride (CTC) incubation to determine respiratory activity, using the pathogen Escherichia coli O157:H7. Counterstaining with a specific fluorescein-conjugated anti-O157 antibody (FAb) following CTC incubation was used to allow confirmation and visualization of bacteria by epifluorescence microscopy. Broth-grown E. coli O157:H7 was used to inoculate fresh ground beef (<17% fat), sterile 0.1% peptone, or water. Inoculated meat was diluted and homogenized in a stomacher and then incubated with paramagnetic beads coated with anti-O157 specific antibody. After IMS, cells with magnetic beads attached were stained with CTC and then an anti-O157 antibody-fluorescein isothiocyanate conjugate and filtered for microscopic enumeration or solid-phase laser cytometry. Enumeration by laser scanning permitted detection of ca. 10 CFU/g of ground beef or <10 CFU/ml of liquid sample. With inoculated meat, the regression results for log-transformed respiring FAb-positive counts of cells recovered on beads versus sorbitol-negative plate counts in the inoculum were as follows: intercept = 1.06, slope = 0.89, and r2 = 0. 95 (n = 13). The corresponding results for inoculated peptone were as follows: intercept = 0.67, slope = 0.88, and r2 = 0.98 (n = 24). Recovery of target bacteria on beads by the IMS-CTC-FAb method, compared with recovery by sorbitol MacConkey agar plating, yielded greater numbers (beef, 6.0 times; peptone, 3.0 times; water, 2.4 times). Thus, within 5 to 7 h, the IMS-CTC-FAb method detected greater numbers of E. coli O157 cells than were detected by plating. The results show that the IMS-CTC-FAb technique with enumeration by either fluorescence microscopy or solid-phase laser scanning cytometry gave results that compared favorably with plating following IMS.  (+info)

Inhibition of fibril formation in beta-amyloid peptide by a novel series of benzofurans. (6/1519)

A series of benzofuran derivatives have been identified as inhibitors of fibril formation in the beta-amyloid peptide. The activity of these compounds has been assessed by a novel fibril-formation-specific immunoassay and for their effects on the production of a biologically active fibril product. The inhibition afforded by the compounds seems to be associated with their binding to beta-amyloid, as identified by scintillation proximity binding assay. Binding assays and NMR studies also indicate that the inhibition is associated with self-aggregation of the compounds. There is a close correlation between the activity of the benzofurans as inhibitors of fibril formation and their ability to bind to beta-amyloid. Non-benzofuran inhibitors of the fibril formation process do not seem to bind to the same site on the beta-amyloid molecule as the benzofurans. Thus a specific recognition site might exist for benzofurans on beta-amyloid, binding to which seems to interfere with the ability of the peptide to form fibrils.  (+info)

Early delineation of ischemic tissue in rat brain cryosections by high-contrast staining. (7/1519)

BACKGROUND AND PURPOSE: After short periods of ischemia, commonly used staining methods yield only moderate differences in optical contrast between normal and damaged brain tissue when gray-scale images are used for computer-assisted image analysis. We describe a high-contrast silver infarct staining (SIS) method that allows an early delineation of ischemic tissue as soon as 2 hours after middle cerebral artery occlusion (MCAO) in rat brain cryosections. METHODS: Rats were subjected to permanent MCAO for 2, 4, 6, and 48 hours. The optical densities were quantified in nonischemic white and gray matter and in damaged tissue from gray-scale images of serial sections with the use of a video camera-based image analyzing system. SIS, hematoxylin-eosin, Nissl, and nitroblue tetrazolium stainings were performed in cryosections, and 2,3, 5-triphenyltetrazolium hydrochloride (TTC) staining was performed in unfrozen vibratome sections. In addition, the range of reduced cerebral blood flow (CBF) in areas demarcated by SIS was determined in iodo[14C]antipyrine autoradiograms of adjacent cryosections. RESULTS: At all times after MCAO, only SIS showed significantly (P<0.01) lower optical densities in damaged than in normal brain tissue for both white and gray matter. TTC staining was as effective as SIS 6 and 48 hours after MCAO. The tightest correlation between areas of reduced SIS and of reduced CBF was found at a mean ischemic CBF of 22.3 mL/100 g per minute. This corresponds to a CBF range of 0 to 44 mL/100 g per minute in areas of reduced SIS. CONCLUSIONS: In contrast to other staining methods, SIS allows a reliable delineation of ischemic brain tissue (core plus penumbra) from nonischemic white and gray matter of rat brain cryosections as soon as 2 hours after MCAO.  (+info)

Brain injury after cerebral arterial air embolism in the rabbit as determined by triphenyltetrazolium staining. (8/1519)

BACKGROUND: Microscopic cerebral arterial air embolism (CAAE) occurs commonly during cardiac surgery and causes acute and chronic nonfocal neurologic dysfunction. Nevertheless, most neuroimaging studies do not detect brain injury after cardiac surgery. Using a rabbit model, the authors hypothesized they could detect and quantitate severe brain injury and infarction 24 h after microscopic CAAE using the vital stain triphenyltetrazolium chloride. METHODS: Experiments were conducted in methohexital anesthetized New Zealand white rabbits. Surgical shams (n = 5) underwent surgery but had no neurologic insult. Positive controls (n = 3) received 200 microl/kg of intracarotid air. Other animals were randomized to receive either 50 microl/kg intracarotid air, which produces microscopic CAAE (n = 18), or 300 microl intracarotid saline (control, n = 18). Outcomes included somatosensory evoked potential amplitude at 90 min, neurologic impairment score at 4 and 24 h (0 [normal] to 99 [coma]), and percentage of nonstaining brain at 24 h using color-discrimination image analysis. Severely injured or infarcted brain does not stain with triphenyltetrazolium chloride. RESULTS: Surgical shams had little neurologic impairment and a small amount of nonstaining brain at 24 h (5.2 +/- 2.4%; mean +/- SD). Positive controls had profound neurologic impairment and large amounts of nonstaining brain (40-97%). Ninety-minute somatosensory evoked potential amplitude was less in animals receiving 50 microl/kg air versus saline: 38 +/- 28% versus 102 +/- 32%, respectively, P < 1 x 10(-7). Neurologic impairment scores were greater in animals receiving 50 microl/kg air versus saline: at 4 h, 43 +/- 16 versus 23 +/- 9, P < 1 x 10(-7); at 24 h, 24 +/- 12 versus 15 +/- 8, P = 0.013. Nevertheless, there was no difference between 50 microl/kg air and saline in nonstaining brain: 5.5 +/- 2.9% versus 6.8 +/- 5.4%, P = 0.83. CONCLUSIONS: Neurologic injury after CAAE is dose-dependent. Although microscopic CAAE causes somatosensory evoked potential abnormalities and neurologic dysfunction, severe cerebral injury or infarction is not present at 24 h. The author's findings are consistent with clinical imaging studies that suggest microscopic CAAE causes neurologic dysfunction even though overt infarction is absent.  (+info)