Conformational aspects of HIV-1 integrase inhibition by a peptide derived from the enzyme central domain and by antibodies raised against this peptide. (1/219)

Monospecific antibodies were raised against a synthetic peptide K159 (SQGVVESMNKELKKIIGQVRDQAEHLKTA) reproducing the segment 147-175 of HIV-1 integrase (IN). Synthesis of substituted and truncated analogs of K159 led us to identify the functional epitope reacting with antibodies within the C-terminal portion 163-175 of K159. Conformational studies combining secondary structure predictions, CD and NMR spectroscopy together with ELISA assays, showed that the greater is the propensity of the epitope for helix formation the higher is the recognition by anti-K159. Both the antibodies and the antigenic peptide K159 exhibited inhibitory activities against IN. In contrast, neither P159, a Pro-containing analog of K159 that presents a kink around proline but with intact epitope conformation, nor the truncated analogs encompassing the epitope, were inhibitors of IN. While the activity of antibodies is restricted to recognition of the sole epitope portion, that of the antigenic K159 likely requires interactions of the peptide with the whole 147-175 segment in the protein [Sourgen F., Maroun, R.G., Frere, V., Bouziane, A., Auclair, C., Troalen, F. & Fermandjian, S. (1996) Eur. J. Biochem. 240, 765-773]. Actually, of all tested peptides only K159 was found to fulfill condition of minimal number of helical heptads to achieve the formation of a stable coiled-coil structure with the IN 147-175 segment. The binding of antibodies and of the antigenic peptide to this segment of IN hampers the binding of IN to its DNA substrates in filter-binding assays. This appears to be the main effect leading to inhibition of integration. Quantitative analysis of filter-binding assay curves indicates that two antibody molecules react with IN implying that the enzyme is dimeric within these experimental conditions. Together, present data provide an insight into the structure-function relationship for the 147-175 peptide domain of the enzyme. They also strongly suggest that the functional enzyme is dimeric. Results could help to assess models for binding of peptide fragments to IN and to develop stronger inhibitors. Moreover, K159 antibodies when expressed in vivo might exhibit useful inhibitory properties.  (+info)

Trifluoroethanol-induced conformational transitions of proteins: insights gained from the differences between alpha-lactalbumin and ribonuclease A. (2/219)

The trifluoroethanol (TFE)-induced structural changes of two proteins widely used in folding experiments, bovine alpha-lactalbumin, and bovine pancreatic ribonuclease A, have been investigated. The experiments were performed using circular dichroism spectroscopy in the far- and near-UV region to monitor changes in the secondary and tertiary structures, respectively, and dynamic light scattering to measure the hydrodynamic dimensions and the intermolecular interactions of the proteins in different conformational states. Both proteins behave rather differently under the influence of TFE: alpha-lactalbumin exhibits a molten globule state at low TFE concentrations before it reaches the so-called TFE state, whereas ribonuclease A is directly transformed into the TFE state at TFE concentrations above 40% (v/v). The properties of the TFE-induced states are compared with those of equilibrium and kinetic intermediate states known from previous work to rationalize the use of TFE in yielding information about the folding of proteins. Additionally, we report on the properties of TFE/water and TFE/buffer mixtures derived from dynamic light scattering investigations under conditions used in our experiments.  (+info)

Helicity of alpha(404-451) and beta(394-445) tubulin C-terminal recombinant peptides. (3/219)

We have investigated the solution conformation of the functionally relevant C-terminal extremes of alpha- and beta-tubulin, employing the model recombinant peptides RL52alpha3 and RL33beta6, which correspond to the amino acid sequences 404-451(end) and 394-445(end) of the main vertebrate isotypes of alpha- and beta-tubulin, respectively, and synthetic peptides with the alpha-tubulin(430-443) and beta-tubulin(412-431) internal sequences. Alpha(404-451) and beta(394-445) are monomeric in neutral aqueous solution (as indicated by sedimentation equilibrium), and have circular dichroism (CD) spectra characteristic of nearly disordered conformation, consistent with low scores in peptide helicity prediction. Limited proteolysis of beta(394-445) with subtilisin, instead of giving extensive degradation, resulted in main cleavages at positions Thr409-Glu410 and Tyr422-Gln423-Gln424, defining the proteolysis resistant segment 410-422, which corresponds to the central part of the predicted beta-tubulin C-terminal helix. Both recombinant peptides inhibited microtubule assembly, probably due to sequestration of the microtubule stabilizing associated proteins. Trifluoroethanol (TFE)-induced markedly helical CD spectra in alpha(404-451) and beta(394-445). A substantial part of the helicity of beta(394-445) was found to be in the CD spectrum of the shorter peptide beta(412-431) with TFE. Two-dimensional 1H-NMR parameters (nonsequential nuclear Overhauser effects (NOE) and conformational C alphaH shifts) in 30% TFE permitted to conclude that about 25% of alpha(404-451) and 40% of beta(394-451) form well-defined helices encompassing residues 418-432 and 408-431, respectively, flanked by disordered N- and C-segments. The side chains of beta(394-451) residues Leu418, Val419, Ser420, Tyr422, Tyr425, and Gln426 are well defined in structure calculations from the NOE distance constraints. The apolar faces of the helix in both alpha and beta chains share a characteristic sequence of conserved residues Ala,Met(+4),Leu(+7),Tyr(+11). The helical segment of alpha(404-451) is the same as that described in the electron crystallographic model structure of alphabeta-tubulin, while in beta(394-451) it extends for nine residues more, supporting the possibility of a functional coil --> helix transition at the C-terminus of beta-tubulin. These peptides may be employed to construct model complexes with microtubule associated protein binding sites.  (+info)

Ultraviolet Raman examination of the environmental dependence of bombolitin I and bombolitin III secondary structure. (4/219)

Bombolitin I and III (BI and BIII) are small amphiphilic peptides isolated from bumblebee venom. Although they exist in predominately nonhelical conformations in dilute aqueous solutions, we demonstrate, using UV Raman spectroscopy, that they become predominately alpha-helical in solution at pH > 10, in high ionic strength solutions, and in the presence of trifluoroethanol (TFE) and dodecylphosphocholine (DPC) micelles. In this paper, we examine the effects of electrostatic and hydrophobic interactions that control folding of BI and BIII by systematically monitoring their secondary structures as a function of solution conditions. We determine the BI and BIII secondary structure contents by using the quantitative UV Raman methodology of Chi et al. (1998. Biochemistry. 37:2854-2864). Our findings suggest that the alpha-helix turn in BIII at neutral pH is stabilized by a salt bridge between residues Asp2 and Lys5. This initial alpha-helical turn results in different BI and BIII alpha-helical folding mechanisms observed in high pH and high salt concentrations: BIII folds from its single alpha-helix turn close to its N-terminal, whereas the BI alpha-helix probably nucleates within the C-terminal half. We also used quasielastic light scattering to demonstrate that the BI and BIII alpha-helix formation in 0.2 M Ca(ClO4)2 is accompanied by formation of trimers and hexamers, respectively.  (+info)

The structural flexibility of the preferredoxin transit peptide. (5/219)

In order to obtain insight into the structural flexibility of chloroplast targeting sequences, the Silene pratensis preferredoxin transit peptide was studied by circular dichroism and nuclear magnetic resonance spectroscopy. In water, the peptide is unstructured, with a minor propensity towards helix formation from Val-9 to Ser-12 and from Gly-30 to Ser-40. In 50% (v/v) trifluoroethanol, structurally independent N- and C-terminal helices are stabilized. The N-terminal helix appears to be amphipathic, with hydrophobic and hydroxylated amino acids on opposite sides. The C-terminal helix comprises amino acids Met-29-Gly-50 and is destabilized at Gly-39. No ordered tertiary structure was observed. The results are discussed in terms of protein import into chloroplasts, in which the possible interactions between the transit peptide and lipids are emphasized.  (+info)

Aqueous trifluorethanol solutions simulate the environment of DNA in the crystalline state. (6/219)

We took 28 fragments of DNA whose crystal structures were known and used CD spectroscopy to search for conditions stabilising the crystal structures in solution. All 28 fragments switched into their crystal structures in 60-80% aqueous trifluorethanol (TFE) to indicate that the crystals affected the conformation of DNA like the concentrated TFE. The fragments crystallising in the B-form also underwent cooperative TFE-induced changes that took place within the wide family of B-form structures, suggesting that the aqueous and crystal B-forms differed as well. Spermine and magnesium or calcium cations, which were contained in the crystallisation buffers, promoted or suppressed the TFE-induced changes of several fragments to indicate that the crystallisation agents can decide which of the possible structures is adopted by the DNA fragment in the crystal.  (+info)

Folding propensities of synthetic peptide fragments covering the entire sequence of phage 434 Cro protein. (7/219)

The phage 434 Cro protein, the N-terminal domain of its repressor (R1-69) and that of phage lambda (lambda6-85) constitute a group of small, monomeric, single-domain folding units consisting of five helices with striking structural similarity. The intrinsic helix stabilities in lambda6-85 have been correlated to its rapid folding behavior, and a residual hydrophobic cluster found in R1-69 in 7 M urea has been proposed as a folding initiation site. To understand the early events in the folding of 434 Cro, and for comparison with R1-69 and lambda6-85, we examined the conformational behavior of five peptides covering the entire 434 Cro sequence in water, 40% (by volume) TFE/water, and 7 M urea solutions using CD and NMR. Each peptide corresponds to a helix and adjacent residues as identified in the native 434 Cro NMR and crystal structures. All are soluble and monomeric in the solution conditions examined except for the peptide corresponding to the 434 Cro helix 4, which has low water solubility. Helix formation is observed for the 434 Cro helix 1 and helix 2 peptides in water, for all the peptides in 40% TFE and for none in 7 M urea. NMR data indicate that the helix limits in the peptides are similar to those in the native protein helices. The number of side-chain NOEs in water and TFE correlates with the helix content, and essentially none are observed in 7 M urea for any peptide, except that for helix 5, where a hydrophobic cluster may be present. The low intrinsic folding propensities of the five helices could account for the observed stability and folding behavior of 434 Cro and is, at least qualitatively, in accord with the results of the recently described diffusion-collision model incorporating intrinsic helix propensities.  (+info)

Solution conformation on bovine growth hormone releasing factor by 1H NMR and molecular modeling. (8/219)

The structure of bovine growth hormone releasing factor (bGHRF) consisting of 44 amino acids has been studied in CD and 1H nuclear magnetic resonance (NMR) spectroscopy in conjunction with molecular modeling. Since bGHRF does not have an ordered structure in water alone, a 30% 2,2,2-trifluoroethanol (TFE) aqueous solvent was used to induce considerable alpha-helical structures, which corresponds to a helical content of approximately 62% as determined by circular dichroism (CD). The secondary structure was obtained from nuclear Overhauser enhancement and 3J(HN alpha) coupling constant in 30% TFE solution. Three-dimensional structures consistent with NMR data were generated by using distance geometry calculation. A set of 267 interproton distances derived from nuclear Overhauser effect correlation spectroscopy (NOESY) experiments and coupling constants were used. From the initial random conformations, 50 distance geometry structures with minimal violations were selected for further refinement. The 14 best structures were obtained after simulated annealing calculation with energy minimization. The structure of bGHRF in 30% TFE solution was characterized by one alpha-helix (residues 8-19), two poorly constrained helices (residues 23-27 and residues 31-34) and a beta I(III)-turn fragment (residues 20-23; phi(i+1) = -53.1 degrees, psi(i+1) = -19.6 degrees, phi(i+2) = -59.9 degrees, psi(i+2) = -20.6 degrees) connected by the segments of less defined structures in N-terminal and omega-shaped flexible C-terminal determined from NOESY cross peaks between helical segment (residues 14-18) and tail fragment (residues 42-44). The obtained structure will play an important role toward the understanding of the structural and functional role of the GHRF.  (+info)