Methanobacterium thermoformicicum thymine DNA mismatch glycosylase: conversion of an N-glycosylase to an AP lyase. (1/83)

The thymine DNA mismatch glycosylase from Methanobacterium thermoformicicum, a member of the endonuclease III family of repair proteins, excises the pyrimidine base from T-G and U-G mismatches. Unlike endonuclease III, it does not cleave the phosphodiester backbone by a beta-elimination reaction. This cleavage event has been attributed to a nucleophilic attack by the conserved Lys120 of endonuclease III on the aldehyde group at C1' of the deoxyribose and subsequent Schiff base formation. The inability of TDG to perform this beta-elimination event appears to be due to the presence of a tyrosine residue at the position equivalent to Lys120 in endonuclease III. The purpose of this work was to investigate the requirements for AP lyase activity. We replaced Tyr126 in TDG with a lysine residue to determine if this replacement would yield an enzyme with an associated AP lyase activity capable of removing a mismatched pyrimidine. We observed that this replacement abolishes the glycosylase activity of TDG but does not affect substrate recognition. It does, however, convert the enzyme into an AP lyase. Chemical trapping assays show that this cleavage proceeds through a Schiff base intermediate and suggest that the amino acid at position 126 interacts with C1' on the deoxyribose sugar.  (+info)

The role of the Escherichia coli mug protein in the removal of uracil and 3,N(4)-ethenocytosine from DNA. (2/83)

The human thymine-DNA glycosylase has a sequence homolog in Escherichia coli that is described to excise uracils from U.G mismatches (Gallinari, P., and Jiricny, J. (1996) Nature 383, 735-738) and is named mismatched uracil glycosylase (Mug). It has also been described to remove 3,N(4)-ethenocytosine (epsilonC) from epsilonC.G mismatches (Saparbaev, M., and Laval, J. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 8508-8513). We used a mug mutant to clarify the role of this protein in DNA repair and mutation avoidance. We find that inactivation of mug has no effect on C to T or 5-methylcytosine to T mutations in E. coli and that this contrasts with the effect of ung defect on C to T mutations and of vsr defect on 5-methylcytosine to T mutations. Even under conditions where it is overproduced in cells, Mug has little effect on the frequency of C to T mutations. Because uracil-DNA glycosylase (Ung) and Vsr are known to repair U.G and T.G mismatches, respectively, we conclude that Mug does not repair U.G or T.G mismatches in vivo. A defect in mug also has little effect on forward mutations, suggesting that Mug does not play a role in avoiding mutations due to endogenous damage to DNA in growing E. coli. Cell-free extracts from mug(+) ung cells show very little ability to remove uracil from DNA, but can excise epsilonC. The latter activity is missing in extracts from mug cells, suggesting that Mug may be the only enzyme in E. coli that can remove this mutagenic adduct. Thus, the principal role of Mug in E. coli may be to help repair damage to DNA caused by exogenous chemical agents such as chloroacetaldehyde.  (+info)

Crystal structure of a thwarted mismatch glycosylase DNA repair complex. (3/83)

The bacterial mismatch-specific uracil-DNA glycosylase (MUG) and eukaryotic thymine-DNA glycosylase (TDG) enzymes form a homologous family of DNA glycosylases that initiate base-excision repair of G:U/T mismatches. Despite low sequence homology, the MUG/TDG enzymes are structurally related to the uracil-DNA glycosylase enzymes, but have a very different mechanism for substrate recognition. We have now determined the crystal structure of the Escherichia coli MUG enzyme complexed with an oligonucleotide containing a non-hydrolysable deoxyuridine analogue mismatched with guanine, providing the first structure of an intact substrate-nucleotide productively bound to a hydrolytic DNA glycosylase. The structure of this complex explains the preference for G:U over G:T mispairs, and reveals an essentially non-specific pyrimidine-binding pocket that allows MUG/TDG enzymes to excise the alkylated base, 3, N(4)-ethenocytosine. Together with structures for the free enzyme and for an abasic-DNA product complex, the MUG-substrate analogue complex reveals the conformational changes accompanying the catalytic cycle of substrate binding, base excision and product release.  (+info)

Characterization of a thermostable DNA glycosylase specific for U/G and T/G mismatches from the hyperthermophilic archaeon Pyrobaculum aerophilum. (4/83)

U/G and T/G mismatches commonly occur due to spontaneous deamination of cytosine and 5-methylcytosine in double-stranded DNA. This mutagenic effect is particularly strong for extreme thermophiles, since the spontaneous deamination reaction is much enhanced at high temperature. Previously, a U/G and T/G mismatch-specific glycosylase (Mth-MIG) was found on a cryptic plasmid of the archaeon Methanobacterium thermoautotrophicum, a thermophile with an optimal growth temperature of 65 degrees C. We report characterization of a putative DNA glycosylase from the hyperthermophilic archaeon Pyrobaculum aerophilum, whose optimal growth temperature is 100 degrees C. The open reading frame was first identified through a genome sequencing project in our laboratory. The predicted product of 230 amino acids shares significant sequence homology to [4Fe-4S]-containing Nth/MutY DNA glycosylases. The histidine-tagged recombinant protein was expressed in Escherichia coli and purified. It is thermostable and displays DNA glycosylase activities specific to U/G and T/G mismatches with an uncoupled AP lyase activity. It also processes U/7,8-dihydro-oxoguanine and T/7,8-dihydro-oxoguanine mismatches. We designate it Pa-MIG. Using sequence comparisons among complete bacterial and archaeal genomes, we have uncovered a putative MIG protein from another hyperthermophilic archaeon, Aeropyrum pernix. The unique conserved amino acid motifs of MIG proteins are proposed to distinguish MIG proteins from the closely related Nth/MutY DNA glycosylases.  (+info)

5-methylcytosine-DNA glycosylase activity is present in a cloned G/T mismatch DNA glycosylase associated with the chicken embryo DNA demethylation complex. (5/83)

We previously have shown that DNA demethylation by chicken embryo 5-methylcytosine DNA glycosylase (5-MCDG) needs both RNA and proteins. One of these proteins is a RNA helicase. Further peptides were sequenced, and three of them are identical to the mammalian G/T mismatch DNA glycosylase. A 3,233-bp cDNA coding for the chicken homologue of human G/T mismatch DNA glycosylase was isolated and sequenced. The derived amino acid sequence (408 aa) shows 80% identity with the human G/T mismatch DNA glycosylase, and both the C and N-terminal parts have about 50% identity. As for the highly purified chicken embryo DNA demethylation complex the recombinant protein expressed in Escherichia coli has both G/T mismatch and 5-MCDG activities. The recombinant protein has the same substrate specificity as the chicken embryo 5-MCDG where hemimethylated DNA is a better substrate than symmetrically methylated CpGs. The activity ratio of G/T mismatch and 5-MCDG is about 30:1 for the recombinant protein expressed in E. coli and 3:1 for the purified enzyme from chicken embryos. The incubation of a recombinant CpG-rich RNA isolated from the purified DNA demethylation complex with the recombinant enzyme strongly inhibits G/T mismatch glycosylase while slightly stimulating the activity of 5-MCDG. Deletion mutations indicate that G/T mismatch and 5-MCDG activities share the same areas of the N- and C-terminal parts of the protein. In reconstitution experiments RNA helicase in the presence of recombinant RNA and ATP potentiates the activity of 5-MCDG.  (+info)

5-Methylcytosine DNA glycosylase activity is also present in the human MBD4 (G/T mismatch glycosylase) and in a related avian sequence. (6/83)

A 1468 bp cDNA coding for the chicken homolog of the human MBD4 G/T mismatch DNA glycosylase was isolated and sequenced. The derived amino acid sequence (416 amino acids) shows 46% identity with the human MBD4 and the conserved catalytic region at the C-terminal end (170 amino acids) has 90% identity. The non-conserved region of the avian protein has no consensus sequence for the methylated DNA binding domain. The recombinant proteins from human and chicken have G/T mismatch as well as 5-methylcytosine (5-MeC) DNA glycosylase activities. When tested by gel shift assays, human recombinant protein with or without the methylated DNA binding domain binds equally well to symmetrically, hemimethylated DNA and non-methylated DNA. However, the enzyme has only 5-MeC DNA glycosylase activity with the hemimethylated DNA. Footprinting of human MBD4 and of an N-terminal deletion mutant with partially depurinated and depyrimidinated substrate reveal a selective binding of the proteins to the modified substrate around the CpG. As for 5-MeC DNA glycosylase purified from chicken embryos, MBD4 does not use oligonucleotides containing mCpA, mCpT or mCpC as substrates. An mCpG within an A+T-rich oligonucleotide is a much better substrate than an A+T-poor sequence. The K:(m) of human MBD4 for hemimethylated DNA is approximately 10(-7) M with a V:(max) of approximately 10(-11) mol/h/microgram protein. Deletion mutations show that G/T mismatch and 5-MeC DNA glycosylase are located in the C-terminal conserved region. In sharp contrast to the 5-MeC DNA glycosylase isolated from the chicken embryo DNA demethylation complex, the two enzymatic activities of MBD4 are strongly inhibited by RNA. In situ hybridization with antisense RNA indicate that MBD4 is only located in dividing cells of differentiating embryonic tissues.  (+info)

The DNA glycosylase T:G mismatch-specific thymine DNA glycosylase represses thyroid transcription factor-1-activated transcription. (7/83)

The transcription factor thyroid transcription factor-1 (TTF-1) is a homeodomain-containing protein that belongs to the NK2 family of genes involved in organogenesis. TTF-1 is required for normal development of the forebrain, lung, and thyroid. In a search for factors that regulate TTF-1 transcriptional activity, we isolated three genes (T:G mismatch-specific thymine DNA glycosylase (TDG), homeodomain-interacting protein kinase 2 (HIPK2), and Ajuba), whose products can interact with TTF-1 in yeast and in mammalian cells. TDG is an enzyme involved in base excision repair. In the present paper, we show that TDG acts as a strong repressor of TTF-1 transcriptional activity in a dose-dependent manner, while HIPK2 and Ajuba display no effect on TTF-1 activity, at least under the tested conditions. TDG-mediated inhibition occurs specifically on TTF-1-responsive promoters in thyroid and non thyroid cells. TDG associates with TTF-1 in mammalian cells through the TTF-1 carboxyl-terminal activation domain and is independent of the homeodomain. These findings reveal a previously unsuspected role for the repair enzyme TDG as a transcriptional repressor and open new routes toward the understanding of the regulation of TTF-1 transcriptional activity.  (+info)

Uracil in DNA--occurrence, consequences and repair. (8/83)

Uracil in DNA results from deamination of cytosine, resulting in mutagenic U : G mispairs, and misincorporation of dUMP, which gives a less harmful U : A pair. At least four different human DNA glycosylases may remove uracil and thus generate an abasic site, which is itself cytotoxic and potentially mutagenic. These enzymes are UNG, SMUG1, TDG and MBD4. The base excision repair process is completed either by a short patch- or long patch pathway, which largely use different proteins. UNG2 is a major nuclear uracil-DNA glycosylase central in removal of misincorporated dUMP in replication foci, but recent evidence also indicates an important role in repair of U : G mispairs and possibly U in single-stranded DNA. SMUG1 has broader specificity than UNG2 and may serve as a relatively efficient backup for UNG in repair of U : G mismatches and single-stranded DNA. TDG and MBD4 may have specialized roles in the repair of U and T in mismatches in CpG contexts. Recently, a role for UNG2, together with activation induced deaminase (AID) which generates uracil, has been demonstrated in immunoglobulin diversification. Studies are now underway to examine whether mice deficient in Ung develop lymphoproliferative malignancies and have a different life span.  (+info)