Hematopoietic stem-cell transplantation for the treatment of severe combined immunodeficiency. (1/1678)

BACKGROUND: Since 1968 it has been known that bone marrow transplantation can ameliorate severe combined immunodeficiency, but data on the long-term efficacy of this treatment are limited. We prospectively studied immunologic function in 89 consecutive infants with severe combined immunodeficiency who received hematopoietic stem-cell transplants at Duke University Medical Center between May 1982 and September 1998. METHODS: Serum immunoglobulin levels and lymphocyte phenotypes and function were assessed and genetic analyses performed according to standard methods. Bone marrow was depleted of T cells by agglutination with soybean lectin and by sheep-erythrocyte rosetting before transplantation. RESULTS: Seventy-seven of the infants received T-cell-depleted, HLA-haploidentical parental marrow, and 12 received HLA-identical marrow from a related donor; 3 of the recipients of haploidentical marrow also received placental-blood transplants from unrelated donors. Except for two patients who received placental blood, none of the recipients received chemotherapy before transplantation or prophylaxis against graft-versus-host disease. Of the 89 infants, 72 (81 percent) were still alive 3 months to 16.5 years after transplantation, including all of the 12 who received HLA-identical marrow, 60 of the 77 (78 percent) who were given haploidentical marrow, and 2 of the 3 (67 percent) who received both haploidentical marrow and placental blood. T-cell function became normal within two weeks after transplantation in the patients who received unfractionated HLA-identical marrow but usually not until three to four months after transplantation in those who received T-cell-depleted marrow. At the time of the most recent evaluation, all but 4 of the 72 survivors had normal T-cell function, and all the T cells in their blood were of donor origin. B-cell function remained abnormal in many of the recipients of haploidentical marrow. In 26 children (5 recipients of HLA-identical marrow and 21 recipients of haploidentical marrow) between 2 percent and 100 percent of B cells were of donor origin. Forty-five of the 72 children were receiving intravenous immune globulin. CONCLUSIONS: Transplantation of marrow from a related donor is a life-saving and life-sustaining treatment for patients with any type of severe combined immunodeficiency, even when there is no HLA-identical donor.  (+info)

Familial antiphospholipid antibody syndrome: criteria for disease and evidence for autosomal dominant inheritance. (2/1678)

OBJECTIVE: To develop diagnostic criteria for a familial form of antiphospholipid antibody syndrome (APS), identify families with >1 affected member, examine possible modes of inheritance, and determine linkage to potential candidate genes. METHODS: Family members of probands with primary APS were analyzed for clinical and laboratory abnormalities associated with APS. Families with > or =2 affected members were analyzed by segregation analysis and typed for candidate genetic markers. RESULTS: Seven families were identified. Thirty of 101 family members met diagnostic criteria for APS. Segregation studies rejected both environmental and autosomal recessive models, and the data were best fit by either a dominant or codominant model. Linkage analysis showed independent segregation of APS and several candidate genes. CONCLUSION: Clinical and laboratory criteria are essential to identify the spectrum of disease associated with APS. We believe a set of criteria was developed that can precisely define affected family members with APS. Modeling studies utilizing these criteria strongly support a genetic basis for disease in families with APS and suggest that a susceptibility gene is inherited in an autosomal dominant pattern. However, in these families, APS was not linked with HLA, Fas, or other candidate genes, including beta2-glycoprotein 1, HLA, T cell receptor beta chain, Ig heavy chain, antithrombin III, Fas ligand, factor V, complement factor H, IgK, and Fas.  (+info)

Natural variation of the expression of HLA and endogenous antigen modulates CTL recognition in an in vitro melanoma model. (3/1678)

Increasing attention has been devoted to elucidating the mechanism of lost or decreased expression of MHC or melanoma-associated antigens (MAAs), which may lead to tumor escape from immune recognition. Loss of expression of HLA class I or MAA has, as an undisputed consequence, loss of recognition by HLA class I-restricted cytotoxic T cells (CTLs). However, the relevance of down-regulation remains in question in terms of frequency of occurrence. Moreover the functional significance of epitope down-regulation, defining the relationship between MHC/epitope density and CTL interactions, is a matter of controversy, particularly with regard to whether the noted variability of expression of MHC/epitope occurs within a range likely to affect target recognition by CTLs. In this study, bulk metastatic melanoma cell lines originated from 25 HLA-A*0201 patients were analyzed for expression of HLA-A2 and MAAs. HLA-A2 expression was heterogeneous and correlated with lysis by CTLs. Sensitivity to lysis was also independently affected by the amount of ligand available for binding at concentrations of 0.001 to 1 mM. Natural expression of MAA was variable, independent from the expression of HLA-A*0201, and a significant co-factor determining recognition of melanoma targets. Thus, the naturally occurring variation in the expression of MAA and/or HLA documented by our in vitro results modulates recognition of melanoma targets and may (i) partially explain CTL-target interactions in vitro and (ii) elucidate potential mechanisms for progressive escape of tumor cells from immune recognition in vivo.  (+info)

Insulin dependent diabetes mellitus (IDDM) and autoimmune thyroiditis in a boy with a ring chromosome 18: additional evidence of autoimmunity or IDDM gene(s) on chromosome 18. (4/1678)

A 4 year 3 month old boy with insulin dependent diabetes mellitus (IDDM), autoimmune thyroiditis, slight mental retardation, facial dysmorphism, and a de novo ring chromosome 18 (deletion 18q22.3-18qter) is described. This unique association of defects could represent a chance association. Alternatively, the clinical features could be the result of the chromosomal aberration. If so, one could speculate that a gene or genes on chromosome 18 might act as a suppressor or activator of the autoimmune process by itself or in concert with other IDDM loci.  (+info)

The predisposition to type 1 diabetes linked to the human leukocyte antigen complex includes at least one non-class II gene. (5/1678)

The human leukocyte antigen (HLA) complex, encompassing 3.5 Mb of DNA from the centromeric HLA-DPB2 locus to the telomeric HLA-F locus on chromosome 6p21, encodes a major part of the genetic predisposition to develop type 1 diabetes, designated "IDDM1." A primary role for allelic variation of the class II HLA-DRB1, HLA-DQA1, and HLA-DQB1 loci has been established. However, studies of animals and humans have indicated that other, unmapped, major histocompatibility complex (MHC)-linked genes are participating in IDDM1. The strong linkage disequilibrium between genes in this complex makes mapping a difficult task. In the present paper, we report on the approach we have devised to circumvent the confounding effects of disequilibrium between class II alleles and alleles at other MHC loci. We have scanned 12 Mb of the MHC and flanking chromosome regions with microsatellite polymorphisms and analyzed the transmission of these marker alleles to diabetic probands from parents who were homozygous for the alleles of the HLA-DRB1, HLA-DQA1, and HLA-DQB1 genes. Our analysis, using three independent family sets, suggests the presence of an additional type I diabetes gene (or genes). This approach is useful for the analysis of other loci linked to common diseases, to verify if a candidate polymorphism can explain all of the association of a region or if the association is due to two or more loci in linkage disequilibrium with each other.  (+info)

Genetic determination of islet cell autoimmunity in monozygotic twin, dizygotic twin, and non-twin siblings of patients with type 1 diabetes: prospective twin study. (6/1678)

OBJECTIVE: To test the hypothesis that non-diabetic dizygotic and monozygotic twin siblings of patients with type 1 diabetes have a similar high prevalence of islet cell autoantibodies, thus suggesting that islet cell autoimmunity is mainly environmentally determined. DESIGN: Prospective twin study. SETTING: Two specialist centres for diabetes in the United States. PARTICIPANTS: Non-diabetic monozygotic twin (n=53), dizygotic twin (n=30), and non-twin (n=149) siblings of patients with type 1 diabetes; 101 controls. MAIN OUTCOME MEASURES: Analysis of progression to diabetes and expression of anti-islet autoantibodies. RESULTS: Monozygotic twin siblings had a higher risk of progression to diabetes (12/53) than dizygotic twin siblings (0/30; P<0.005). At the last follow up 22 (41.5%) monozygotic twin siblings expressed autoantibodies compared with 6 (20%) dizygotic twin siblings (P<0.05), 16 (10.7%) non-twin siblings (P<0.0001), and 6 (5.9%) controls (P<0.0001). Monozygotic twin siblings expressed multiple (>/=2) antibodies more often than dizygotic twin siblings (10/38 v 1/23; P<0.05). By life table analysis the probability of developing positive autoantibodies was higher among the monozygotic twin siblings bearing the diabetes associated HLA DQ8/DQ2 genotype than in those without this genotype (64.2% (95% confidence interval 32.5% to 96%) v 23.5% (7% to 40%) at 10 years of discordance; P<0.05). CONCLUSION: Monozygotic and dizygotic twins differ in progression to diabetes and expression of islet cell autoantibodies. Dizygotic twin siblings are similar to non-twin siblings. These two observations suggest that genetic factors play an important part in determination of islet cell autoimmunity, thus rejecting the hypothesis. In addition, there is a high penetrance of islet cell autoimmunity in DQ8/DQ2 monozygotic twin siblings.  (+info)

Linkage of Crohn's disease to the major histocompatibility complex region is detected by multiple non-parametric analyses. (7/1678)

BACKGROUND: There is evidence for genetic susceptibility to Crohn's disease, and a tentative association with tumour necrosis factor (TNF) and HLA class II alleles. AIMS: To examine the potential of genetic linkage between Crohn's disease and the MHC region on chromosome 6p. METHODS: TNF microsatellite markers and, for some families, additional HLA antigens were typed for 323 individuals from 49 Crohn's disease multiplex families to generate informative haplotypes. Non-parametric linkage analysis methods, including sib pair and affected relative pair methods, were used. RESULTS: Increased sharing of haplotypes was observed in affected sib pairs: 92% (48/52) shared one or two haplotypes versus an expected 75% if linkage did not exist (p=0.004). After other affected relative pairs were included, the significance level reached 0.001. The mean proportion of haplotype sharing was increased for both concordant affected (pi=0.60, p=0.002) and unaffected sib pairs (pi=0.58, p=0. 031) compared with the expected value (pi=0.5). In contrast, sharing in discordant sib pairs was significantly decreased (pi=0.42, p=0. 007). Linear regression analysis using all three types of sib pairs yielded a slope of -0.38 at p=0.00003. It seemed that the HLA effect was stronger in non-Jewish families than in Jewish families. CONCLUSIONS: All available analytical methods support linkage of Crohn's disease to the MHC region in these Crohn's disease families. This region is estimated to contribute approximately 10-33% of the total genetic risk to Crohn's disease.  (+info)

Auto- and alloimmune reactivity to human islet allografts transplanted into type 1 diabetic patients. (8/1678)

Allogeneic islet transplantation can restore an insulin-independent state in C-peptide-negative type 1 diabetic patients. We recently reported three cases of surviving islet allografts that were implanted in type 1 diabetic patients under maintenance immune suppression for a previous kidney graft. The present study compares islet graft-specific cellular auto- and alloreactivity in peripheral blood from those three recipients and from four patients with failing islet allografts measured over a period of 6 months after portal islet implantation. The three cases that remained C-peptide-positive for >1 year exhibited no signs of alloreactivity, and their autoreactivity to islet autoantigens was only marginally increased. In contrast, rapid failure (<3 weeks) in three other cases was accompanied by increases in precursor frequencies of graft-specific alloreactive T-cells; in one of them, the alloreactivity was preceded by a sharply increased autoreactivity to several islet autoantigens. One recipient had a delayed loss of islet graft function (33 weeks); he did not exhibit signs of graft-specific alloimmunity, but developed a delayed increase in autoreactivity. The parallel between metabolic outcome of human beta-cell allografts and cellular auto- and alloreactivity in peripheral blood suggests a causal relationship. The present study therefore demonstrates that T-cell reactivities in peripheral blood can be used to monitor immune mechanisms, which influence survival of beta-cell allografts in diabetic patients.  (+info)