Regulation of apoptotic protease activating factor-1 oligomerization and apoptosis by the WD-40 repeat region. (65/9059)

Apoptotic protease activating factor-1 (Apaf-1) has been identified as a proximal activator of caspase-9 in cell death pathways that trigger mitochondrial damage and cytochrome c release. The mechanism of Apaf-1 action is unclear but has been proposed to involve the clustering of caspase-9 molecules, thereby facilitating autoprocessing of adjacent zymogens. Here we show that Apaf-1 can dimerize via the CED-4 homologous and linker domains of the molecule providing a means by which Apaf-1 can promote the clustering of caspase-9 and facilitate its activation. Apaf-1 dimerization was repressed by the C-terminal half of the molecule, which contains multiple WD-40 repeats, but this repression was overcome in the presence of cytochrome c and dATP. Removal of the WD-40 repeat region resulted in a constitutively active Apaf-1 that exhibited greater cytotoxicity in transient transfection assays when compared with full-length Apaf-1. These data suggest a mechanism for Apaf-1 function and reveal an important regulatory role for the WD-40 repeat region.  (+info)

Histological analysis and ancient DNA amplification of human bone remains found in caius iulius polybius house in pompeii. (66/9059)

Thirteen skeletons found in the Caius Iulius Polybius house, which has been the object of intensive study since its discovery in Pompeii 250 years ago, have provided an opportunity to study either bone diagenesis by histological investigation or ancient DNA by polymerase chain reaction analysis. DNA analysis was done by amplifying both X- and Y-chromosomes amelogenin loci and Y-specific alphoid repeat locus. The von Willebrand factor (vWF) microsatellite locus on chromosome 12 was also analyzed for personal identification in two individuals showing alleles with 10/11 and 12/12 TCTA repeats, respectively. Technical problems were the scarcity of DNA content from osteocytes, DNA molecule fragmentation, microbial contamination which change bone structure, contaminating human DNA which results from mishandling, and frequent presence of Taq DNA polymerase inhibiting molecules like polyphenols and heavy metals. The results suggest that the remains contain endogenous human DNA that can be amplified and analyzed. The amplifiability of DNA corresponds to the bone preservation and dynamics of the burial conditions subsequent to the 79 A.D. eruption.  (+info)

A random survey of the Cryptosporidium parvum genome. (67/9059)

Cryptosporidium parvum is an obligate intracellular pathogen responsible for widespread infections in humans and animals. The inability to obtain purified samples of this organism's various developmental stages has limited the understanding of the biochemical mechanisms important for C. parvum development or host-parasite interaction. To identify C. parvum genes independent of their developmental expression, a random sequence analysis of the 10.4-megabase genome of C. parvum was undertaken. Total genomic DNA was sheared by nebulization, and fragments between 800 and 1,500 bp were gel purified and cloned into a plasmid vector. A total of 442 clones were randomly selected and subjected to automated sequencing by using one or two primers flanking the cloning site. In this way, 654 genomic survey sequences (GSSs) were generated, corresponding to >320 kb of genomic sequence. These sequences were assembled into 408 contigs containing >250 kb of unique sequence, representing approximately 2.5% of the C. parvum genome. Comparison of the GSSs with sequences in the public DNA and protein databases revealed that 107 contigs (26%) displayed similarity to previously identified proteins and rRNA and tRNA genes. These included putative genes involved in the glycolytic pathway, DNA, RNA, and protein metabolism, and signal transduction pathways. The repetitive sequence elements identified included a telomere-like sequence containing hexamer repeats, 57 microsatellite-like elements composed of dinucleotide or trinucleotide repeats, and a direct repeat sequence. This study demonstrates that large-scale genomic sequencing is an efficient approach to analyze the organizational characteristics and information content of the C. parvum genome.  (+info)

Molecular characterization of CTNS deletions in nephropathic cystinosis: development of a PCR-based detection assay. (68/9059)

Nephropathic cystinosis is an autosomal recessive disorder that is characterized by accumulation of intralysosomal cystine and is caused by a defect in the transport of cystine across the lysosomal membrane. Using a positional cloning strategy, we recently cloned the causative gene, CTNS, and identified pathogenic mutations, including deletions, that span the cystinosis locus. Two types of deletions were detected-one of 9.5-16 kb, which was seen in a single family, and one of approximately 65 kb, which is the most frequent mutation found in the homozygous state in nearly one-third of cystinotic individuals. We present here characterization of the deletion breakpoints and demonstrate that, although both deletions occur in regions of repetitive sequences, they are the result of nonhomologous recombination. This type of mechanism suggests that the approximately 65-kb deletion is not a recurrent mutation, and our results confirm that it is identical in all patients. Haplotype analysis shows that this large deletion is due to a founder effect that occurred in a white individual and that probably arose in the middle of the first millenium. We also describe a rapid PCR-based assay that will accurately detect both homozygous and heterozygous deletions, and we use it to show that the approximately 65-kb deletion is present in either the homozygous or the heterozygous state in 76% of cystinotic patients of European origin.  (+info)

Chromosome breakage in the Prader-Willi and Angelman syndromes involves recombination between large, transcribed repeats at proximal and distal breakpoints. (69/9059)

Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are distinct neurobehavioral disorders that most often arise from a 4-Mb deletion of chromosome 15q11-q13 during paternal or maternal gametogenesis, respectively. At a de novo frequency of approximately.67-1/10,000 births, these deletions represent a common structural chromosome change in the human genome. To elucidate the mechanism underlying these events, we characterized the regions that contain two proximal breakpoint clusters and a distal cluster. Novel DNA sequences potentially associated with the breakpoints were positionally cloned from YACs within or near these regions. Analyses of rodent-human somatic-cell hybrids, YAC contigs, and FISH of normal or rearranged chromosomes 15 identified duplicated sequences (the END repeats) at or near the breakpoints. The END-repeat units are derived from large genomic duplications of a novel gene (HERC2), many copies of which are transcriptionally active in germline tissues. One of five PWS/AS patients analyzed to date has an identifiable, rearranged HERC2 transcript derived from the deletion event. We postulate that the END repeats flanking 15q11-q13 mediate homologous recombination resulting in deletion. Furthermore, we propose that active transcription of these repeats in male and female germ cells may facilitate the homologous recombination process.  (+info)

Mimicry of the hepatitis delta virus replication cycle mediated by synthetic circular oligodeoxynucleotides. (70/9059)

BACKGROUND: Hepatitis delta virus (HDV) is a circular single-stranded RNA pathogen whose monomeric form results from self-processing. Although studies have examined minimal HDV ribozyme activities, the mechanism for forming the circular virus remains unclear, and the trans catalytic properties of self-processed forms of HDV ribozymes have not been studied. In addition, HDV ribozymes have not previously been engineered to cleave a non-HDV sequence. RESULTS: Long repeating RNAs have been produced from in vitro rolling-circle transcription of synthetic circular oligodeoxynucleotides encoding catalytically active subsets of the entire antigenomic RNA virus. Like full-length HDV, these multimeric RNAs undergo self-processing to monomer length; importantly, cyclization is found to occur efficiently, but only in the presence of the circular template. Linear and circular monomer ribozymes and engineered variants are shown to be active in cleaving HDV and HIV RNA targets in trans, despite having self-binding domains. CONCLUSIONS: Mimicry of the rolling-circle replication pathway for HDV replication has led to a new proposal for cyclization of HDV RNA. Under these conditions, cyclization is mediated by the complementary circular template. In addition, it has been shown that self-processed HDV ribozymes can be catalytically active in trans despite the presence of antisense sequences built into their structure.  (+info)

Dependence of the regulation of telomere length on the type of subtelomeric repeat in the yeast Saccharomyces cerevisiae. (71/9059)

In the yeast Saccharomyces cerevisiae, chromosomes terminate with approximately 400 bp of a simple repeat poly(TG(1-3)). Based on the arrangement of subtelomeric X and Y' repeats, two types of yeast telomeres exist, those with both X and Y' (Y' telomeres) and those with only X (X telomeres). Mutations that result in abnormally short or abnormally long poly(TG(1-3)) tracts have been previously identified. In this study, we investigated telomere length in strains with two classes of mutations, one that resulted in short poly(TG(1-3)) tracts (tel1) and one that resulted in elongated tracts (pif1, rap1-17, rif1, or rif2). In the tel1 pif1 strain, Y' telomeres had about the same length as those in tel1 strains and X telomeres had lengths intermediate between those in tel1 and pif1 strains. Strains with either the tel1 rap1-17 or tel1 rif2 genotypes had short tracts for all chromosome ends examined, demonstrating that the telomere elongation characteristic of rap1-17 and rif2 strains is Tel1p-dependent. In strains of the tel1 rif1 or tel1 rif1 rif2 genotypes, telomeres with Y' repeats had short terminal tracts, whereas most of the X telomeres had long terminal tracts. These results demonstrate that the regulation of telomere length is different for X and Y' telomeres.  (+info)

Telomerase activity in germ cell cancers and mature teratomas. (72/9059)

BACKGROUND: An inverse relationship has been reported between the presence of telomerase enzymatic activity and the induction of differentiation in human tumor cell lines. Male germ cell tumors represent an attractive clinical model to assess this relationship further because high telomerase activity is present in normal germ cell progenitors and in embryonal carcinomas that can differentiate into mature teratomas. To investigate how telomerase activity and the differentiation state of germ cell tumors are related, telomerase activities and telomere lengths were measured in benign testicular tissues, germ cell cancers, and mature or immature teratomas. METHODS: By use of a modified telomeric repeat amplification protocol (TRAP) assay, telomerase activity was measured in four specimens of benign testicular tissue, in 27 germ cell cancers, in seven mature teratomas, and in one immature teratoma. Telomere lengths were measured in all specimens by restriction digestion of genomic DNA and Southern blot hybridization analysis. Associations between telomerase activity and tissue histopathology were assessed with two-sided Fisher's exact tests. RESULTS: Telomerase activity was detected in all examined germ cell cancers and in the benign testicular tissue specimens. In marked contrast, telomerase activity was not detected in any mature teratoma (P<.0001). Very long telomeres were detected in some mature teratomas, consistent with telomerase repression as a late event in teratoma formation. The immature teratoma, with malignant transformation, had high telomerase activity. CONCLUSION: Telomerase is active in germ cell cancers and repressed in mature teratomas. The absence of telomerase activity may contribute to the limited proliferative capacity of mature teratomas. These findings support the existence of an inverse relationship between telomerase activity and the differentiation state of clinical germ cell tumors.  (+info)