Do case studies mislead about the nature of reality? (1/2278)

This paper attempts a partial, critical look at the construction and use of case studies in ethics education. It argues that the authors and users of case studies are often insufficiently aware of the literary nature of these artefacts: this may lead to some confusion between fiction and reality. Issues of the nature of the genre, the fictional, story-constructing aspect of case studies, the nature of authorship, and the purposes and uses of case studies as "texts" are outlined and discussed. The paper concludes with some critical questions that can be applied to the construction and use of case studies in the light of the foregoing analysis.  (+info)

Do studies of the nature of cases mislead about the reality of cases? A response to Pattison et al. (2/2278)

This article questions whether many are misled by current case studies. Three broad types of style of case study are described. A stark style, based on medical case studies, a fictionalised style in reaction, and a personal statement made in discussion groups by an original protagonist. Only the second type fits Pattison's category. Language remains an important issue, but to be examined as the case is lived in discussion rather than as a potentially reductionist study of the case as text.  (+info)

Specific temporoparietal gyral atrophy reflects the pattern of language dissolution in Alzheimer's disease. (3/2278)

The aim of this study was to determine the topography and degree of atrophy in speech and language-associated cortical gyri in Alzheimer's disease. The post-mortem brains of 10 patients with pathologically confirmed Alzheimer's disease and 21 neurological and neuropathological controls were sectioned in serial 3 mm coronal slices and grey and white matter volumes were determined for specific cortical gyri. All Alzheimer's disease patients had prospectively documented impairments in verbal and semantic memory with concomitant global decline. The cortical regions of interest included the planum temporale, Heschl's gyri, the anterior superior temporal gyri, the middle and inferior temporal gyri, area 37 at the inferior temporoparietal junction, areas 40 and 39 (supramarginal and angular gyri) and Broca's frontal regions. Although most patients had end-stage disease, the language-associated cortical regions were affected to different degrees, with some regions free of atrophy. These included Broca's regions in the frontal lobe and Heschl's gyri on the superior surface of the temporal lobe. In contrast, the inferior temporal and temporoparietal gyri (area 37) were severely reduced in volume. The phonological processing regions in the superior temporal gyri (the planum temporale) were also atrophic in all Alzheimer's disease patients while the anterior superior temporal gyri were only atrophic in female patients. Such atrophy may underlie the more severe language impairments previously described in females with Alzheimer's disease. The present study is the first to analyse the volumes of language-associated gyri in post-mortem patients with confirmed Alzheimer's disease. The results show that atrophy is not global but site-specific. Atrophied gyri appear to reflect a specific network of language and semantic memory dissolution seen in the clinical features of patients with Alzheimer's disease. Females showed greater atrophy than males in the anterior superior temporal gyri.  (+info)

Human hippocampus associates information in memory. (4/2278)

The hippocampal formation, one of the most complex and vulnerable brain structures, is recognized as a crucial brain area subserving human long-term memory. Yet, its specific functions in memory are controversial. Recent experimental results suggest that the hippocampal contribution to human memory is limited to episodic memory, novelty detection, semantic (deep) processing of information, and spatial memory. We measured the regional cerebral blood flow by positron-emission tomography while healthy volunteers learned pairs of words with different learning strategies. These led to different forms of learning, allowing us to test the degree to which they challenge hippocampal function. Neither novelty detection nor depth of processing activated the hippocampal formation as much as semantically associating the primarily unrelated words in memory. This is compelling evidence for another function of the human hippocampal formation in memory: establishing semantic associations.  (+info)

A semantic lexicon for medical language processing. (5/2278)

OBJECTIVE: Construction of a resource that provides semantic information about words and phrases to facilitate the computer processing of medical narrative. DESIGN: Lexemes (words and word phrases) in the Specialist Lexicon were matched against strings in the 1997 Metathesaurus of the Unified Medical Language System (UMLS) developed by the National Library of Medicine. This yielded a "semantic lexicon," in which each lexeme is associated with one or more syntactic types, each of which can have one or more semantic types. The semantic lexicon was then used to assign semantic types to lexemes occurring in a corpus of discharge summaries (603,306 sentences). Lexical items with multiple semantic types were examined to determine whether some of the types could be eliminated, on the basis of usage in discharge summaries. A concordance program was used to find contrasting contexts for each lexeme that would reflect different semantic senses. Based on this evidence, semantic preference rules were developed to reduce the number of lexemes with multiple semantic types. RESULTS: Matching the Specialist Lexicon against the Metathesaurus produced a semantic lexicon with 75,711 lexical forms, 22,805 (30.1 percent) of which had two or more semantic types. Matching the Specialist Lexicon against one year's worth of discharge summaries identified 27,633 distinct lexical forms, 13,322 of which had at least one semantic type. This suggests that the Specialist Lexicon has about 79 percent coverage for syntactic information and 38 percent coverage for semantic information for discharge summaries. Of those lexemes in the corpus that had semantic types, 3,474 (12.6 percent) had two or more types. When semantic preference rules were applied to the semantic lexicon, the number of entries with multiple semantic types was reduced to 423 (1.5 percent). In the discharge summaries, occurrences of lexemes with multiple semantic types were reduced from 9.41 to 1.46 percent. CONCLUSION: Automatic methods can be used to construct a semantic lexicon from existing UMLS sources. This semantic information can aid natural language processing programs that analyze medical narrative, provided that lexemes with multiple semantic types are kept to a minimum. Semantic preference rules can be used to select semantic types that are appropriate to clinical reports. Further work is needed to increase the coverage of the semantic lexicon and to exploit contextual information when selecting semantic senses.  (+info)

Electrophysiological manifestations of open- and closed-class words in patients with Broca's aphasia with agrammatic comprehension. An event-related brain potential study. (6/2278)

This paper presents electrophysiological data on the on-line processing of open- and closed-class words in patients with Broca's aphasia with agrammatic comprehension. Event-related brain potentials were recorded from the scalp when Broca patients and non-aphasic control subjects were visually presented with a story in which the words appeared one at a time on the screen. Separate waveforms were computed for open- and closed-class words. The non-aphasic control subjects showed clear differences between the processing of open- and closed-class words in an early (210-375 ms) and a late (400-700 ms) time-window. The early electrophysiological differences reflect the first manifestation of the availability of word-category information from the mental lexicon. The late differences presumably relate to post-lexical semantic and syntactic processing. In contrast to the control subjects, the Broca patients showed no early vocabulary class effect and only a limited late effect. The results suggest that an important factor in the agrammatic comprehension deficit of Broca's aphasics is a delayed and/or incomplete availability of word-class information.  (+info)

Language related brain potentials in patients with cortical and subcortical left hemisphere lesions. (7/2278)

The role of the basal ganglia in language processing is currently a matter of discussion. Therefore, patients with left frontal cortical and subcortical lesions involving the basal ganglia as well as normal controls were tested in a language comprehension paradigm. Semantically incorrect, syntactically incorrect and correct sentences were presented auditorily. Subjects were required to listen to the sentences and to judge whether the sentence heard was correct or not. Event-related potentials and reaction times were recorded while subjects heard the sentences. Three different components correlated with different language processes were considered: the so-called N400 assumed to reflect processes of semantic integration; the early left anterior negativity hypothesized to reflect processes of initial syntactic structure building; and a late positivity (P600) taken to reflect second-pass processes including re-analysis and repair. Normal participants showed the expected N400 component for semantically incorrect sentences and an early anterior negativity followed by a P600 for syntactically incorrect sentences. Patients with left frontal cortical lesions displayed an attenuated N400 component in the semantic condition. In the syntactic condition only a late positivity was observed. Patients with lesions of the basal ganglia, in contrast, showed an N400 to semantic violations and an early anterior negativity as well as a P600 to syntactic violations, comparable to normal controls. Under the assumption that the early anterior negativity reflects automatic first-pass parsing processes and the P600 component more controlled second-pass parsing processes, the present results suggest that the left frontal cortex might support early parsing processes, and that specific regions of the basal ganglia, in contrast, may not be crucial for early parsing processes during sentence comprehension.  (+info)

Semantic integration in reading: engagement of the right hemisphere during discourse processing. (8/2278)

We examined the brain areas involved in discourse processing by using functional MRI in 10 individuals as they read paragraphs, with or without a title, word by word for comprehension. Functional data were collected from 20 adjacent 5 mm axial slices. Discourse processing was associated with activation in inferior frontal and temporal regions of both cerebral hemispheres in the titled and untitled conditions. Moreover, there was substantially more right hemisphere activation for untitled than for the titled paragraphs. More specifically we found: (i) greater activation in the inferior temporal sulcus of both hemispheres for untitled than titled paragraphs; (ii) greater average volume of activation in response to untitled than titled paragraphs in the middle temporal sulcus of the right hemisphere and the reverse pattern in the left middle temporal sulcus. Consistent with previous studies of individuals with right hemisphere damage, we suggest that the right middle temporal regions may be especially important for integrative processes needed to achieve global coherence during discourse processing.  (+info)