Glucocorticoids reverse leptin effects on food intake and body fat in mice without increasing NPY mRNA. (33/1561)

Glucocorticoid stimulation of appetite and leptin expression conflicts with leptin inhibition of food intake and suggests that glucocorticoids reduce sensitivity to leptin. To determine if glucocorticoids impair feeding and metabolic responses to leptin, we measured leptin-induced changes in food intake, body weight, hormones, carcass fat, and hypothalamic neuropeptide Y (NPY) mRNA in adrenalectomized mice with and without corticosterone replacement. Leptin infusion (0.5 microgram/h) significantly decreased food intake and body weight in adrenalectomized mice. Corticosterone replacement approximating normal 24-h mean levels restored food intake but did not permit weight gain equivalent to PBS-infused controls. Corticosterone levels comparable to stress-induced production completely reversed leptin-induced reductions in weight gain and body fat, despite significant attenuation by leptin of corticosterone-induced increases in plasma insulin levels. Glucocorticoid replacement increased food intake without reversing leptin inhibition of hypothalamic NPY mRNA levels. We conclude that glucocorticoid levels within the physiological range can interfere with leptin action and that glucocorticoid effects are at least partly independent of NPY.  (+info)

Effect of RNA synthesis on the binding of 3H-cortisol to nuclear ribonucleoprotein particles from rat liver carrying DNA-like RNA in vivo. (34/1561)

3H-cortisol was found to associate with rat liver nuclear 30S ribonucleoprotein particles carrying D-RNA in vivo. No interaction was detectable when RNA synthesis was inhibited by alpha-amanitine. The association appears to be specifically for RNP carrying RNA synthesized after the administration of cortisol to adrenalectomized rats. The DNA/protein/RNA ratio of rat liver nuclei was not effected by alpha-amanitine under our conditions. However, the drug caused a 5-10 fold decrease in nuclear uptake of cortisol. The results are discussed in relation to a supposed transfer of cortisol-receptor complexes from the chromatin template to the nascent RNA chains.  (+info)

Expression of alpha(1b) adrenoceptor mRNA in corticotropin-releasing hormone-containing cells of the rat hypothalamus and its regulation by corticosterone. (35/1561)

Considerable evidence supports a role for brainstem adrenergic and noradrenergic inputs to corticotropin-releasing hormone (CRH) cells of the hypothalamic paraventricular nucleus (PVN), in the control of hypothalamic-pituitary-adrenocortical (HPA) axis function. However, little is known about specific adrenoceptor (ADR) subtypes in CRH-containing cells of the PVN. Here we demonstrate, using dual in situ hybridization, that mRNA encoding alpha(1b) ADR is colocalized with CRH in the rat PVN. Furthermore, we confirm that these alpha(1b) ADR mRNA-containing cells are stress-responsive, by colocalization with c-fos mRNA after restraint, swim, or immune stress. To determine whether expression of alpha(1b) ADR mRNA is influenced by circulating glucocorticoids, male rats underwent bilateral adrenalectomy (ADX) or sham surgery, and were killed after 1, 3, 7, or 14 d. In situ hybridization revealed levels of alpha(1b) ADR mRNA were increased in the PVN 7 and 14 d after ADX, but were not altered in the hippocampus, amygdala, or dorsal raphe. Additional rats underwent ADX or sham surgery and received a corticosterone pellet (10 or 50 mg) or placebo for 7 d. Corticosterone replacement (10 mg) reduced the ADX-induced increase in PVN alpha(1b) ADR mRNA to control levels, whereas 50 mg of corticosterone replacement resulted in a decrease in PVN alpha(1b) ADR mRNA as compared with all other groups. Furthermore, levels of plasma corticosterone were significantly correlated (inverse relationship) with alpha(1b) ADR mRNA in the PVN. We conclude that alpha(1b) ADR mRNA is expressed in CRH-containing, stress-responsive cells of the PVN and is highly sensitive to circulating levels of corticosterone. Because activation of the alpha(1B) adrenoceptor is predominantly excitatory within the brain, we predict that this receptor plays an important role in facilitation of the HPA axis response.  (+info)

Purification and primary structure of a macromolecular-translocation inhibitor II of glucocorticoid-receptor binding to nuclei from rat liver. Inhibitor II is the 11.5-kDa Zn2+-binding protein (parathymosin). (36/1561)

The nuclear binding of the activated glucocorticoid-receptor (GR) is inhibited by endogenous macromolecules in vitro. Previously, we have separated the inhibitors into three species (MTI-I, MTI-II and MTI-III). In this study, we purified the most potent of the three species (MTI-II) from the livers of adrenalectomized rats to apparent homogeneity as judged by two-dimensional PAGE. Purified MTI-II inhibits GR binding to DNA containing glucocorticoid-response elements. To obtain the amino acid sequence of MTI-II, we digested the MTI-II with endopeptidases. The N-terminal amino acid sequences of the four digested fragments indicated that MTI-II is an 11.5-kDa Zn2+-binding protein (ZnBP, also known as parathymosin). Furthermore, we purified ZnBP to apparent homogeneity and found that it also inhibits GR binding to nuclei. ZnBP is known to be an abundant acidic protein involved in cell proliferation, and interacts with histone H1 or key enzymes of carbohydrate metabolism via its acidic domain. We also showed that the inhibition of GR binding to nuclei is mediated by the acidic domain of MTI-II (ZnBP, parathymosin) and that GR binds to the MTI-II affinity matrix. Our findings add a new biological function, i.e. the inhibition of GR binding to nuclei and DNA, to this ZnBP. Moreover, our findings suggest that the abundant acidic protein is involved in glucocorticoid action.  (+info)

Anti-inflammatory activity of macrolide antibiotics. (37/1561)

The effect of four macrolide antibiotics (roxithromycin, clarithromycin, erythromycin, and azithromycin) on the generation of some mediators and cytokines involved in the inflammatory process has been studied both in vivo and in vitro. Rat carrageenin pleurisy was used as a model of acute inflammation, and the macrolides were administered (10, 20, and 40 mg/kg p.o.) 1 h before the carrageenin challenge. Exudate volume and leukocyte accumulation were both dose-dependently reduced by roxithromycin, clarithromycin and erythromycin in either normal or adrenalectomized animals. Furthermore, in normal rats, prostaglandin (PG)E(2), nitrate plus nitrite, and tumor necrosis factor-alpha levels in pleural exudate were significantly reduced by these macrolides. Roxithromycin appeared more effective than erythromycin and clarithromycin, whereas azithromycin only slightly affected the inflammatory reaction. None of the macrolides were able to modify leukotriene B(4) exudate levels. In vitro experiments have shown that the four macrolides (5-80 microM) reduced in a concentration-dependent manner the production of 6-keto-PGF(1alpha), NO(2)(-), tumor necrosis factor-alpha, interleukin-1beta, and interleukin-6 by lipopolysaccharide-stimulated J774 macrophages. In J774 cells, the inhibition of 6-keto-PGF(1alpha) and NO(2)(-) production by roxithromycin and erythromycin was not dependent on direct inhibition of cyclooxygenase-2 and inducible nitric oxide synthase activity because it appears to be related to the inhibition of cyclooxygenase-2 and inducible nitric oxide synthase protein expression. In conclusion, the present study shows that macrolide antibiotics have anti-inflammatory activity, which likely depends on their ability to prevent the production of proinflammatory mediators and cytokines, and suggest that these agents, particularly roxithromycin, can exert therapeutic effects independently of their antibacterial activity.  (+info)

Assessment of mechanisms involved in antinociception caused by sesquiterpene polygodial. (38/1561)

Polygodial, a sesquiterpene isolated from the bark of Drymis winteri given systemically, intraplantarly, or by spinal or supraspinal sites, produced antinociception when assessed in both phases of the formalin test and against capsaicin-induced pain. Polygodial, even at high doses, had no antinociceptive or antihyperalgesic effect when assessed in hot-plate assay or in glutamate-induced hyperalgesia, nor did it significantly interfere with the motor coordination of animals when tested in the rota-rod test. The polygodial antinociception assessed in the formalin test was not affected by i.p. treatment of animals with cyprodime, yohimbine, phaclofen, bicuculine, or nitric oxide precursor or by intrathecal administration of potassium channel blockers such as apamin, charybdotoxin, glibenclamide, or tetraethylammonium. In contrast, polygodial antinociception was significantly attenuated by i.p. treatment of animals with naloxone, naltrindole, 2-(3, 4-dichlorophenyl)-n-methyl-n-[(1S)-1-(3-isothiocynatophenyl)-2-(1- pry rolidinyl)ethyl]acetamide, p-chlorophenylalanine, prazosin, or by i. c.v. treatment with pertussis toxin. In addition, polygodial antinociception was not cross-tolerant to morphine, nor was its effect affected by the adrenalectomy of animals. Together, these results show that polygodial produces pronounced systemic, spinal, and supraspinal antinociception in mice, mainly preventing the neurogenic pain produced by formalin and capsaicin. The mechanism by which polygodial produces antinociception seems likely to involve an interaction with the opioid system, mainly kappa and delta subtypes, depend on the activation of G(i/o) protein sensitive to pertussis toxin, alpha(1)-adrenoceptors, and the serotoninergic system. Collectively, these results suggest that polygodial itself or its derivatives may have potential therapeutic value for the development of new analgesic drugs.  (+info)

Endogenous glucocorticoids modulate experimental anti-glomerular basement membrane glomerulonephritis. (39/1561)

The influence of endogenous glucocorticoids (GC) on glomerular injury was studied in a rat model of heterologous anti-glomerular basement membrane (GBM) glomerulonephritis (GN). Sprague-Dawley rats underwent adrenalectomy (ADX) or sham-operation 3 days prior to i.v. administration of both nephritogenic (100 microgram/g) and subnephritogenic (50 microgram/g) doses of sheep anti-rat GBM globulin. Administration of a subnephritogenic dose of anti-GBM globulin resulted in GN in adrenalectomized animals only. Similarly, ADX performed prior to administration of anti-GBM in the nephritogenic dose range resulted in exacerbation of GN compared with sham-operated animals (24 h protein excretion: 190.8 +/- 32.8 versus 42.5 +/- 2.6 mg/24 h; P < 0.005). In ADX animals receiving subnephritogenic doses of anti-GBM injury was manifested by abnormal proteinuria (62.7 +/- 5.8 mg/24 h), accumulation of neutrophils which peaked at 6 h (7.2 +/- 1.37 neutrophils per glomerular cross-section (neut/gcs)) and macrophage accumulation in glomeruli at 24 h (6.8 +/- 1.2 macrophages/gcs). Sham-adrenalectomized animals given the same dose of anti-GBM globulin developed minimal or no glomerular injury: urinary protein excretion (8.7 +/- 1.5 mg/24 h, P < 0.001); neutrophils (0.2 +/- 0.04 neutrophils/gcs, P < 0.001); macrophages (1.2 +/- 0.5 macrophages/gcs, P < 0.001). The increased cellular recruitment to glomeruli in adrenalectomized animals was associated with glomerular endothelial P-selectin expression. P-selectin expression was not detected in sham-operated rats after anti-GBM injection. Complement deposition in glomeruli was minimal in both groups. Physiologic GC replacement of ADX rats receiving subnephritogenic-dose anti-GBM reversed the observed susceptibility to GN development, with urinary protein excretion (7.8 +/- 1.12, P < 0.005) and no detectable P-selectin expression or leucocyte accumulation in glomeruli. These results suggest that endogenous GC modulate heterologous anti-GBM nephritis in rats and that this may be attributable, in part, to regulation of P-selectin expression.  (+info)

Regulation of cyclooxygenase-2 (COX-2) in rat renal cortex by adrenal glucocorticoids and mineralocorticoids. (40/1561)

Production of prostaglandins involved in renal salt and water homeostasis is modulated by regulated expression of the inducible form of cyclooxygenase-2 (COX-2) at restricted sites in the rat renal cortex. Because inflammatory COX-2 is suppressed by glucocorticoids, and prostaglandin levels in the kidney are sensitive to steroids, the sensitivity of COX expression to adrenalectomy (ADX) was investigated. By 2 weeks after ADX in mature rats, cortical COX-2 immunoreactivity increased 10-fold in the cortical thick ascending limb and macula densa. The constitutive isoform, COX-1, was unchanged. The magnitude of the changes and specificity of COX-2 immunoreactivity were validated by in situ hybridization histochemistry of COX-2 mRNA and Western blot analysis. Increased COX-2 activity (>5-fold) was documented by using a specific COX-2 inhibitor. The COX-2 up-regulation in ADX rats was reversed by replacement therapy with either corticosterone or deoxycorticosterone acetate. In normal rats, inhibition of glucocorticoid receptors with RU486 or mineralocorticoid receptors with spironolactone caused up-regulation of renal cortical COX-2. These results indicate that COX-2 expression in situ is tonically inhibited by adrenal steroids, and COX-2 is regulated by mineralocorticoids as well as glucocorticoids.  (+info)