PcpA, which is involved in the degradation of pentachlorophenol in Sphingomonas chlorophenolica ATCC39723, is a novel type of ring-cleavage dioxygenase. (1/288)

The pentachlorophenol (PCP) mineralizing bacterium Sphingomonas chlorophenolica ATCC39723 degrades PCP via 2,6-dichlorohydroquinone (2,6-DCHQ). The pathway converting PCP to 2,6-DCHQ has been established previously; however, the pathway beyond 2,6-DCHQ is not clear, although it has been suggested that a PcpA plays a role in 2, 6-DCHQ conversion. In this study, PcpA expressed in Escherichia coli was purified to homogeneity and shown to have novel ring-cleavage dioxygenase activity in conjunction with hydroquinone derivatives, and converting 2,6-DCHQ to 2-chloromaleylacetate.  (+info)

Selective and continuous degradation of carbazole contained in petroleum oil by resting cells of Sphingomonas sp. CDH-7. (2/288)

Microbial degradation of carbazole (CA), a model of hard-removal heterocyclic nitrogen compounds contained in petroleum oil, was examined using Sphingomonas sp. CDH-7 isolated from a soil sample by screening for CA-assimilating microorganisms. CDH-7 used CA as a sole source of carbon and nitrogen, and metabolized CA to ammonia via anthranilic acid as an intermediate product. When CDH-7 was cultivated in the medium containing CA at the concentration of 500 mg/l (2.99 mM), CA was completely degraded within 50 h. By the reaction with the resting cells of CDH-7, 500 mg/l of CA was completely degraded within 4 h, with 1.64 mM of ammonia accumulated in the reaction mixture. When CA was added at the concentration of 100 mg/l (0.599 mM) periodically to the reaction mixture ten times, 925 mg/l (5.54 mM) of CA was degraded within 48 h by the resting cells, and 4.50 mM of ammonia was accumulated in the reaction mixture with a 75.1% molar conversion yield based on total CA added. The resting cells could almost completely degrade CA in a two-liquid-phase system which consists of water and organic solvent, even in the presence of 20% (v/v) isooctane, n-hexane, cyclohexane, and kerosene as a model petroleum oil. In the presence of an organic solvent system such as 20% (v/v) pxylene, toluene, and heptanol, however, CA degradation yields decreased.  (+info)

Cloning and sequencing of a novel meta-cleavage dioxygenase gene whose product is involved in degradation of gamma-hexachlorocyclohexane in Sphingomonas paucimobilis. (3/288)

Sphingomonas (formerly Pseudomonas) paucimobilis UT26 utilizes gamma-hexachlorocyclohexane (gamma-HCH), a halogenated organic insecticide, as a sole source of carbon and energy. In a previous study, we showed that gamma-HCH is degraded to chlorohydroquinone (CHQ) and then to hydroquinone (HQ), although the rate of reaction from CHQ to HQ was slow (K. Miyauchi, S. K. Suh, Y. Nagata, and M. Takagi, J. Bacteriol. 180:1354-1359, 1998). In this study, we cloned and characterized a gene, designated linE, which is located upstream of linD and is directly involved in the degradation of CHQ. The LinE protein consists of 321 amino acids, and all of the amino acids which are reported to be essential for the activity of meta-cleavage dioxygenases are conserved in LinE. Escherichia coli overproducing LinE could convert both CHQ and HQ, producing gamma-hydroxymuconic semialdehyde and maleylacetate, respectively, with consumption of O(2) but could not convert catechol, which is one of the major substrates for meta-cleavage dioxygenases. LinE seems to be resistant to the acylchloride, which is the ring cleavage product of CHQ and which seems to react with water to be converted to maleylacetate. These results indicated that LinE is a novel type of meta-cleavage dioxygenase, designated (chloro)hydroquinone 1, 2-dioxygenase, which cleaves aromatic rings with two hydroxyl groups at para positions preferably. This study represents a direct demonstration of a new type of ring cleavage pathway for aromatic compounds, the hydroquinone pathway.  (+info)

Analysis of the reaction mechanism and substrate specificity of haloalkane dehalogenases by sequential and structural comparisons. (4/288)

Haloalkane dehalogenases catalyse environmentally important dehalogenation reactions. These microbial enzymes represent objects of interest for protein engineering studies, attempting to improve their catalytic efficiency or broaden their substrate specificity towards environmental pollutants. This paper presents the results of a comparative study of haloalkane dehalogenases originating from different organisms. Protein sequences and the models of tertiary structures of haloalkane dehalogenases were compared to investigate the protein fold, reaction mechanism and substrate specificity of these enzymes. Haloalkane dehalogenases contain the structural motifs of alpha/beta-hydrolases and epoxidases within their sequences. They contain a catalytic triad with two different topological arrangements. The presence of a structurally conserved oxyanion hole suggests the two-step reaction mechanism previously described for haloalkane dehalogenase from Xanthobacter autotrophicus GJ10. The differences in substrate specificity of haloalkane dehalogenases originating from different species might be related to the size and geometry of an active site and its entrance and the efficiency of the transition state and halide ion stabilization by active site residues. Structurally conserved motifs identified within the sequences can be used for the design of specific primers for the experimental screening of haloalkane dehalogenases. Those amino acids which were predicted to be functionally important represent possible targets for future site-directed mutagenesis experiments.  (+info)

Crystallization and preliminary X-ray crystallographic analysis of alginate lyase A1-II from Sphingomonas species A1. (5/288)

Alginate lyase A1-II of Sphingomonas species A1 was purified and crystallized using the hanging drop vapor-diffusion method in 0.1 M Tris-HCl buffer containing 43% saturated ammonium sulfate, 8% polyethylene glycol 4000 and 0.2 M Li(2)SO(4) at pH 8.5 and 20 degrees C. The crystals are tetragonal and belong to the space group P4(3)2(1)2 or P4(1)2(1)2 with unit cell dimensions of a=b=144.07 and c=296.38 A. The diffraction data up to 2.8 A were collected by a synchrotron radiation source at SPring-8 in Japan.  (+info)

Structural analysis of two glycosphingolipids from the lipopolysaccharide-lacking bacterium Sphingomonas capsulata. (6/288)

Two glycosphingolipids, GSL-1 and GSL-3, were isolated from Sphingomonas capsulata and studied by methylation analysis, laser desorption mass spectrometry, and 1H and 13C NMR spectroscopy, including two-dimensional 1H,1H COSY and heteronuclear 13C,1H COSY experiments. GSL-1 and GSL-3 differ in their carbohydrate part, their structures being alpha-D-GlcpA-(1-->1)-Cer and alpha-D-Galp-(1-->6)-alpha-D-GlcpN-(1-->4)-alpha-D-GlcpA(1-- >1)Cer, respectively. Variations occur in the ceramide of GSL-1 and GSL-3, both having the same long-chain bases, erythro-2-amino-1, 3-octadecanediol (sphinganine), (13Z)-erythro-2-amino-13-eicosene-1, 3-diol and (13Z)-erythro-2-amino-13,14-methylene-1,3-eicosanediol, in the ratios 2.6 : 1 : 3.5 in GSL-1 and 1 : 1.2 : 1.5 in GSL-3. All bases are quantitatively substituted by amide-linked (S)-2-hydroxymyristic acid.  (+info)

Presence of two trans-o-hydroxybenzylidenepyruvate hydratase-aldolases in naphthalenesulfonate-assimilating Sphingomonas paucimobilis TA-2: comparison of some properties. (7/288)

Two trans-o-hydroxybenzylidenepyruvate hydratase-aldolases named tHBP HA A and tHBP HA B were purified from a cell-free extract of naphthalenesulfonate-assimilating Sphingomonas paucimobilis (formerly Pseudomonas sp.) TA-2 to an electrophoretically homogeneous state by successive column chromatographies on DEAE-cellulose, DEAE-Toyopearl 650M, Sephacryl S-100, Hydroxyapatite, and Mono Q. These enzymes were similar to each other in molecular mass (ca. 37 kDa on SDS-PAGE, ca. 110 kDa on ultracentrifugation), thermal stability (<50 degrees C) and optimum pH (pH 9.0). However, they differed from each other in N-terminal amino acid sequences, pH stability, K(m) values for trans-o-hydroxybenzylidenepyruvate (tHBP), and inhibition by p-chloromercuribenzoic acid (PCMB). tHBP HA B had a homologous N-terminal amino acid sequence with tHBP HAs from Pseudomonas vesicularis DSM 6383 (strain BN6) and Sphingomonas aromaticivorans F119, and tHBP HA A had a homologous sequence with tHBP HAs of Pseudomonas putida strain OUS82, Pseudomonas sp. strain C18 and NAH7 plasmid. tHBP HA B was inhibited by PCMB, but tHBP HA A was not. Their K(m) values for tHBP were 9 and 3 M, respectively. tHBP HA B was stable in the range of pH 7.1 to pH 10.7, and tHBP HA A was stable in the range of pH 6.0 to 9.3.  (+info)

A second [2Fe-2S] ferredoxin from Sphingomonas sp. Strain RW1 can function as an electron donor for the dioxin dioxygenase. (8/288)

The first step in the degradation of dibenzofuran and dibenzo-p-dioxin by Sphingomonas sp. strain RW1 is carried out by dioxin dioxygenase (DxnA1A2), a ring-dihydroxylating enzyme. An open reading frame (fdx3) that could potentially specify a new ferredoxin has been identified downstream of dxnA1A2, a two-cistron gene (J. Armengaud, B. Happe, and K. N. Timmis, J. Bacteriol. 180:3954-3966, 1998). In the present study, we report a biochemical analysis of Fdx3 produced in Escherichia coli. This third ferredoxin thus far identified in Sphingomonas sp. strain RW1 contained a putidaredoxin-type [2Fe-2S] cluster which was characterized by UV-visible absorption spectrophotometry and electron paramagnetic resonance spectroscopy. The midpoint redox potential of this ferredoxin (E'(0) = -247 +/- 10 mV versus normal hydrogen electrode at pH 8.0) is similar to that exhibited by Fdx1 (-245 mV), a homologous ferredoxin previously characterized in Sphingomonas sp. strain RW1. In in vitro assays, Fdx3 can be reduced by RedA2 (a reductase similar to class I cytochrome P-450 reductases), previously isolated from Sphingomonas sp. strain RW1. RedA2 exhibits a K(m) value of 3.2 +/- 0.3 microM for Fdx3. In vivo coexpression of fdx3 and redA2 with dxnA1A2 confirmed that Fdx3 can serve as an electron donor for the dioxin dioxygenase.  (+info)