Characterisation of copper-binding to the second sub-domain of the Menkes protein ATPase (MNKr2). (1/6255)

The Menkes ATPase (MNK) has an essential role in the translocation of copper across cellular membranes. In a complementary manner, the intracellular concentration of copper regulates the activity and cellular location of the ATPase through its six homologous amino-terminal domains. The roles of the six amino-terminal domains in the activation and cellular trafficking processes are unknown. Understanding the role of these domains relies on the development of an understanding of their metal-binding properties and structural properties. The second conserved sub-domain of MNK was over-expressed, purified and its copper-binding properties characterised. Reconstitution studies demonstrate that copper binds to MNKr2 as Cu(I) with a stoichiometry of one copper per domain. This is the first direct evidence of copper-binding to the MNK amino-terminal repeats. Circular dichroism studies suggest that the binding or loss of copper to MNKr2 does not cause substantial changes to the secondary structure of the protein.  (+info)

Cloning, overexpression, purification, and physicochemical characterization of a cold shock protein homolog from the hyperthermophilic bacterium Thermotoga maritima. (2/6255)

Thermotoga maritima (Tm) expresses a 7 kDa monomeric protein whose 18 N-terminal amino acids show 81% identity to N-terminal sequences of cold shock proteins (Csps) from Bacillus caldolyticus and Bacillus stearothermophilus. There were only trace amounts of the protein in Thermotoga cells grown at 80 degrees C. Therefore, to perform physicochemical experiments, the gene was cloned in Escherichia coli. A DNA probe was produced by PCR from genomic Tm DNA with degenerated primers developed from the known N-terminus of TmCsp and the known C-terminus of CspB from Bacillus subtilis. Southern blot analysis of genomic Tm DNA allowed to produce a partial gene library, which was used as a template for PCRs with gene- and vector-specific primers to identify the complete DNA sequence. As reported for other csp genes, the 5' untranslated region of the mRNA was anomalously long; it contained the putative Shine-Dalgarno sequence. The coding part of the gene contained 198 bp, i.e., 66 amino acids. The sequence showed 61% identity to CspB from B. caldolyticus and high similarity to all other known Csps. Computer-based homology modeling allowed the conclusion that TmCsp represents a beta-barrel similar to CspB from B. subtilis and CspA from E. coli. As indicated by spectroscopic analysis, analytical gel permeation chromatography, and mass spectrometry, overexpression of the recombinant protein yielded authentic TmCsp with a molecular weight of 7,474 Da. This was in agreement with the results of analytical ultracentrifugation confirming the monomeric state of the protein. The temperature-induced equilibrium transition at 87 degrees C exceeds the maximum growth temperature of Tm and represents the maximal Tm-value reported for Csps so far.  (+info)

Safety and pharmacokinetics of abacavir (1592U89) following oral administration of escalating single doses in human immunodeficiency virus type 1-infected adults. (3/6255)

Abacavir (1592U89) is a nucleoside analog reverse transcriptase inhibitor that has been demonstrated to have selective activity against human immunodeficiency virus (HIV) in vitro and favorable safety profiles in mice and monkeys. A phase I study was conducted to evaluate the safety and pharmacokinetics of abacavir following oral administration of single escalating doses (100, 300, 600, 900, and 1,200 mg) to HIV-infected adults. In this double-blind, placebo-controlled study, subjects with baseline CD4+ cell counts ranging from < 50 to 713 cells per mm3 (median, 315 cells per mm3) were randomly assigned to receive abacavir (n = 12) or placebo (n = 6). The bioavailability of the caplet formulation relative to that of the oral solution was also assessed with the 300-mg dose. Abacavir was well tolerated by all subjects; mild to moderate asthenia, abdominal pain, headache, diarrhea, and dyspepsia were the most frequently reported adverse events, and these were not dose related. No significant clinical or laboratory abnormalities were observed throughout the study. All doses resulted in mean abacavir concentrations in plasma that exceeded the mean 50% inhibitory concentration (IC50) for clinical HIV isolates in vitro (0.07 microgram/ml) for almost 3 h. Abacavir was rapidly absorbed following oral administration, with the time to the peak concentration in plasma occurring at 1.0 to 1.7 h postdosing. Mean maximum concentrations in plasma (Cmax) and the area under the plasma concentration-time curve from time zero to infinity (AUC0-infinity) increased slightly more than proportionally from 100 to 600 mg (from 0.6 to 4.7 micrograms/ml for Cmax; from 1.0 to 15.7 micrograms.h/ml for AUC0-infinity) but increased proportionally from 600 to 1,200 mg (from 4.7 to 9.6 micrograms/ml for Cmax; from 15.7 to 32.8 micrograms.h/ml for AUC0-infinity. The elimination of abacavir from plasma was rapid, with an apparent elimination half-life of 0.9 to 1.7 h. Abacavir was well absorbed, with a relative bioavailability of the caplet formulation of 96% versus that of an oral solution (drug substance in water). In conclusion, this study showed that abacavir is safe and is well tolerated by HIV-infected subjects and demonstrated predictable pharmacokinetic characteristics when it was administered as single oral doses ranging from 100 to 1,200 mg.  (+info)

Safety and single-dose pharmacokinetics of abacavir (1592U89) in human immunodeficiency virus type 1-infected children. (4/6255)

Abacavir (formerly 1592U89) is a potent 2'-deoxyguanosine analog reverse transcriptase inhibitor that has been demonstrated to have a favorable safety profile in initial clinical trials with adults with human immunodeficiency virus (HIV) type 1 infection. A phase I study was conducted to evaluate the pharmacokinetics and safety of abacavir following the administration of two single oral doses (4 and 8 mg/kg of body weight) to 22 HIV-infected children ages 3 months to 13 years. Plasma was collected for analysis at predose and at 0.5, 1, 1.5, 2, 2.5, 3, 5, and 8 h after the administration of each dose. Plasma abacavir concentrations were determined by high-performance liquid chromatography, and data were analyzed by noncompartmental methods. Abacavir was well tolerated by all subjects. The single abacavir-related adverse event was rash, which occurred in 2 of 22 subjects. After administration of the oral solution, abacavir was rapidly absorbed, with the time to the peak concentration in plasma occurring within 1.5 h postdosing. Pharmacokinetic parameter estimates were comparable among the different age groups for each dose level. The mean maximum concentration in plasma (Cmax) and the mean area under the curve from time zero to infinity (AUC0-infinity) increased by 16 and 45% more than predicted, respectively, as the abacavir dose was doubled from 4 to 8 mg/kg (Cmax increased from 1.69 to 3.94 micrograms/ml, and AUC0-infinity increased from 2.82 to 8.09 micrograms.h/ml). Abacavir was rapidly eliminated, with a mean elimination half-life of 0.98 to 1.13 h. The mean apparent clearance from plasma decreased from 27.35 to 18.88 ml/min/kg as the dose increased. Neither body surface area nor creatinine clearance were correlated with pharmacokinetic estimates at either dose. The extent of exposure to abacavir appears to be slightly lower in children than in adults, with the comparable unit doses being based on body weight. In conclusion, this study showed that abacavir is safe and well tolerated in children when it is administered as a single oral dose of 4 or 8 mg/kg.  (+info)

The binding affinity of Ff gene 5 protein depends on the nearest-neighbor composition of the ssDNA substrate. (5/6255)

The Ff gene 5 protein (g5p) is considered to be a nonspecific single-stranded DNA binding protein, because it binds cooperatively to and saturates the Ff bacteriophage single-stranded DNA genome and other single-stranded polynucleotides. However, the binding affinity Komega (the intrinsic binding constant times a cooperativity factor) differs by over an order of magnitude for binding to single-stranded polynucleotides such as poly[d(A)] and poly[d(C)]. A polynucleotide that is more stacked, like poly[d(A)], binds more weakly than one that is less stacked, like poly[d(C)]. To test the hypothesis that DNA base stacking, a nearest-neighbor property, is involved in the binding affinity of the Ff g5p for different DNA sequences, Komega values were determined as a function of NaCl concentration for binding to six synthetic sequences 48 nucleotides in length: dA48, dC48, d(AAC)16, d(ACC)16, d(AACC)12, and d(AAACC)9A3. The binding affinities of the protein for these sequences were indeed found to be related to the nearest-neighbor compositions of the sequences, rather than to simple base compositions. That is, the g5p binding site, which is spanned by four nucleotides, discriminates among these sequences on the basis of the relative numbers of nearest neighbors (AA, CC, and AC plus CA) in the sequence. The results support the hypothesis that the extent of base stacking/unstacking of the free, nonbound ssDNA plays an important role in the binding affinity of the Ff gene 5 protein.  (+info)

Extraction and analysis of cosmetic active ingredients from an anti-cellulitis transdermal delivery system by high-performance liquid chromatography. (6/6255)

A new transdermal delivery system that controls cellulitis is evaluated using reversed-phase high-performance liquid chromatography coupled with photodiode array detection. An extraction procedure and the validation of the analytical method to assay the active excipients from the Centella asiatica plant (asiaticoside, madacessic acid, and asiatic acid) are described. Excellent results ae obtained in terms of linearity, accuracy, and specificity of the analytical method.  (+info)

Identification of the major tamoxifen-DNA adducts in rat liver by mass spectroscopy. (7/6255)

We present here the first mass spectroscopic (MS) identification of the main tamoxifen-induced DNA adducts in rat liver. The two main adducts were isolated by high-performance liquid chromatography (HPLC) and identified by MS, MS-MS and ultraviolet spectroscopy. Adduct 1 was the N-desmethyltamoxifen-deoxyguanosine adduct in which the alpha-position of the metabolite N-desmethyltamoxifen is linked covalently to the amino group of deoxyguanosine. Adduct 2 was confirmed to be the trans isomer of alpha-(N2-deoxyguanosinyl)tamoxifen, as previously suggested by co-chromatography.  (+info)

Conformation and self-association of human recombinant transforming growth factor-beta3 in aqueous solutions. (8/6255)

The transforming growth factors-beta (TGF-beta) are important regulatory peptides for cell growth and differentiation with therapeutic potential for wound healing. Among the several TGF-beta isoforms TGF-beta3 has a particularly low solubility at physiological pH and easily forms aggregates. A spectroscopic structural analysis of TGF-beta3 in solution has thus been difficult. In this study, circular dichroism spectroscopy was used to determine the secondary structural elements of TGF-beta3. In addition, the aggregation of TGF-beta3 was investigated systematically as a function of pH and salt concentration using a rapid screening method. Sedimentation equilibrium and sedimentation velocity analysis revealed that TGF-beta3 exists predominantly in two major forms: (i) monomers in solution at low pH and (ii) large precipitating aggregates at physiological pH. Under acidic conditions (pH < 3.8) the protein was not aggregated. At pH approximately 3.9, a monomer right arrow over left arrow dimer equilibrium could be detected that transformed into larger aggregates at pH > 4.1. Aggregation was pronounced in the pH range of 4.3 < pH < 9.8 with the aggregation maximum between pH 6.5 and 8. 5. The aggregation process was accompanied by a structural change of the protein. The CD spectra were characterized by an isodichroic point at 209.5 nm indicating a two-state equilibrium between TGF-beta3 dissolved in solution and aggregated TGF-beta3. Aggregated TGF-beta3 showed a higher beta-sheet content and lower beta-turn and random coil contributions compared with monomeric TGF-beta3. Both the solution structure and the aggregate structure of TGF-beta3 were different from the crystal structure. This was in contrast to TGF-beta2, which showed very similar crystal and solution structures. Under alkaline conditions (pH > 9.8) the turbidity disappeared and a further conformational change was induced. The pH dependence of the TGF-beta3 conformation in solution in the range of 2.3 < pH < 11. 0 was reversible. Aggregation of TGF-beta3 was, furthermore, influenced by the presence of salt. For pH > 3.8 the addition of salt greatly enhanced the tendency to aggregate, even in the very basic domain. Under physiological conditions (pH 7.4, cNaCl = 164 mM) TGF-beta3 has almost the highest tendency to aggregate and will remain in solution only at nanomolar concentrations.  (+info)