Magnetic measurements of pulmonary contamination. (1/289)

The magnitic determination of pulmonary contamination is based on the remanent magnetization of ferromagnetic contaminating particles. The remanent field of the externally magnetized particles is proportional to their amount and shows their distribution. Although only magnetizable particles are detected with this method, the amount of the inhaled ferromagnetic substance can be used when the total dust exposure of the worker is estimated. In this work five shipyard welders were studied. First the particles disposed to the lungs were externally magnetized and then their distribution was mapped with a sensitive magnetometer. The magnitudes of the remanent fields measured from the welders differed from the fields measured from controls by several orders of magnitude. The radiographic findings showed a good correlation with the magnetic measurements, and further experiments will prove whether this method can partly replace presently used radiological investigations.  (+info)

Occupational risk factors of lung cancer: a hospital based case-control study. (2/289)

OBJECTIVES: To investigate the relation between lung cancer and exposure to occupational carcinogens in a highly industrialised region in western Europe. METHODS: In a case-control study 478 cases and 536 controls, recruited from 10 hospitals in the Antwerp region, were interviewed. Cases were male patients with histologically confirmed lung cancer; controls were male patients without cancer or primary lung diseases. Data were collected by questionnaires to obtain information on occupations, exposures, and smoking history. Job titles were coded with the Office of Populations, Censuses and Surveys industrial classification. Exposure was assessed by self report and by job-task exposure matrix. Exposure odds ratios were calculated with logistic regression analysis adjusted for age, smoking history, and marital and socio-economic status. RESULTS: A job history in the categories manufacturing of transport equipment other than automobiles (for example, shipyard workers), transport support services (for example, dockers), and manufacturing of metal goods (for example, welders) was significantly associated with lung cancer (odds ratios (ORs) 2.3, 1.6, and 1.6 respectively). These associations were independent of smoking, education, civil, and economic status. Self reported exposure to potential carcinogens did not show significant associations with lung cancer, probably due to nondifferential misclassification. When assessed by job-task exposure matrix, exposure to molybdenum, mineral oils, and chromium were significantly associated with lung cancer. A strong association existed between smoking and lung cancer: OR of ex-smokers 4.2, OR of current smokers 14.5 v non-smokers. However, smoking did not confound the relation between occupational exposure and lung cancer. CONCLUSIONS: The study has shown a significant excess risk of lung cancer among workers in manufacturing of metal goods, manufacturing of transport equipment (other than automobiles), and transport support services. Assessment of exposure to specific carcinogens resulted in significant associations of chromium, mineral oils, and molybdenum with lung cancer. This study is, to our knowledge, the first study reporting a significant association between occupational exposure to molybdenum and lung cancer.  (+info)

Two year follow up of pulmonary function values among welders in New Zealand. (3/289)

OBJECTIVES: To examine whether welding is a risk factor for an accelerated decline in pulmonary function. METHODS: 2 Year follow up of pulmonary function and respiratory symptoms among 54 welders and 38 non-welders in eight New Zealand welding sites. RESULTS: There were no significant differences in age, height, smoking habits, ethnicity, or total time in industrial work between welders and non-welders. No overall differences were noted in the changes of pulmonary function variables between the two study groups. However, when the comparison was restricted to smokers, welders had a significantly greater (p = 0.02) annual decline (88.8 ml) in FEV1 than non-welders, who had a slight non-significant annual increase (34.2 ml). Also, welders without respiratory protection or local exhaust ventilation while welding had a greater annual decline both in forced vital capacity (FVC) and forced expiratory volume in one second (FEV1) than welders with protection (p = 0.001 and 0.04, respectively). Among welders a significant association was found between the acute across shift change and the annual decline in FEV1. Chronic bronchitis was more common among welders (24%) than non-welders (5%). Only one welder (2%) but eight non-welders (21%) reported having asthma. CONCLUSIONS: Welders who smoked and welders working without local exhaust ventilation or respiratory protection have an increased risk of accelerated decline in FEV1.  (+info)

Decrements in cognitive performance in metal inert gas welders exposed to aluminium. (4/289)

OBJECTIVES: Often little has been discovered of the cognitive functions affected by occupational toxins because many functions cooperate to produce the single performance scores typically reported from neuropsychological tests. To facilitate the interpretation of neuropsychological scores, the issue of occupational exposure to aluminium was examined with an approach intended to increase understanding of those cognitive processes that may be affected. METHODS: The investigation was a cross sectional study of asymptomatic aluminium welders and a reference group of mild steel welders. Based on urinary aluminium concentrations, welders were classified into a reference (n = 28), low (n = 27), and high (n = 24) exposure group. The mean urinary aluminium concentrations were 0.46, 2.25, and 9.98 mumol/l, respectively. A comprehensive neuropsychological examination was undertaken to assess psychomotor function, simple visual reaction time, attention related tasks, verbal and visual or visuospatial abilities as well as verbal and visual learning and memory. RESULTS: Aluminium welders showed no impairment on the finger tapping, Santa Ana dexterity, simple visual reaction times, any of the verbal memory tasks, the similarities subtest of Wechsler adult intelligence scale, or the Stroop task. However, the low exposed group performed poorer on the memory for designs and on more difficult block design items demanding preliminary visuospatial analysis. The time limited synonym task, embedded figures, digit symbol speed, and the backward counting component of the divided attention task showed exposure-response relations. CONCLUSIONS: The impairments found were circumscribed. When the neuropsychological tasks were scored to show some of the underlying theoretical cognitive structures, the results indicated that performance difficulties were mainly detected in tasks requiring working memory, particularly that relating to processing of visuospatial information. There was also evidence that such impairments are more readily found in time limited tasks involving visually presented material, in which effective visual scanning combined with control of working memory is demanded.  (+info)

Laboratory evaluation of welder's exposure and efficiency of air duct ventilation for welding work in a confined space. (5/289)

CO2 arc welding in a confined space was simulated in a laboratory by manipulating a welding robot which worked in a small chamber to experimentally evaluate the welder's exposure to welding fumes, ozone and carbon monoxide (CO). The effects of the welding arc on the air temperature rise and oxygen (O2) concentration in the chamber were also investigated. The measuring points for these items were located in the presumed breathing zone of a welder in a confined space. The time averaged concentrations of welding fumes, ozone and CO during the arcing time were 83.55 mg/m3, 0.203 ppm and 0.006%, respectively, at a welding current of 120A-200A. These results suggest serious exposure of a welder who operates in a confined space. Air temperature in the chamber rose remarkably due to the arc heat and the increase in the welding current. No clear decrease in the O2 concentration in the chamber was recognized during this welding operation. A model of air duct ventilation was constructed in the small chamber to investigate the strategy of effective ventilation for hazardous welding contaminants in a confined space. With this model we examined ventilation efficiency with a flow rate of 1.08-1.80 m3/min (ventilation rate for 0.40-0.67 air exchanges per minute) in the chamber, and proved that the exposure level was not drastically reduced during arcing time by this air duct ventilation, but the residual contaminants were rapidly exhausted after the welding operation.  (+info)

Laboratory measurement of hazardous fumes and gases at a point corresponding to breathing zone of welder during a CO2 arc welding. (6/289)

Concentrations of fumes, ozone (O3), carbon monoxide (CO), nitric oxide (NO), manganese (Mn) and total and hexavalent chromium (Cr) as well as size distribution of fumes were measured at a point corresponding to the welder's breathing zone during CO2-arc welding, using a welding robot and three kinds of wires. Concentrations of fumes, O3, CO, Mn and total-Cr were found to exceed their corresponding occupational exposure limit (OEL) values, while the concentrations of NO and Cr(VI) were below those OEL levels. Airborne concentration of Mn exceeded its OEL value, and the Mn content was 8 times higher in welding fumes than in the wire. Using an additive equation of OEL and exposure concentration of each hazardous component, health risk in welders with combined exposure to welding fumes and gases was assessed as 18.6 to 46.0 times of OEL, which exceeded the unity. This finding suggests that effective protection of welders from the exposure can be attained by use of the supplied-air respirator or combined use of a dust respirator and a local exhaust system.  (+info)

Body burden of aluminum in relation to central nervous system function among metal inert-gas welders. (7/289)

OBJECTIVES: The relationship between elevated internal aluminum loads and central nervous system function was studied among aluminum welders, and the threshold level for adverse effect was defined. METHODS: For 65 aluminum welders and 25 current mild steel welders body burden was estimated, and the aluminum concentrations in serum (S-Al) and urine (U-Al) were analyzed with graphite furnace atomic absorption spectrometry with Zeeman background correction. Referents and low-exposure and high-exposure groups were defined according to an aggregated measure of aluminum body burden, the group median S-Al levels being 0.08, 0.14, and 0.46 micromol/l, respectively, and the corresponding values for U-Al being 0.4, 1.8, and 7.1 micromol/l. Central nervous system functions were assessed with a neuropsychological test battery, symptom and mood questionnaires, a visual and quantitative analysis of electroencephalography (EEG), and P3 event-related potentials with pitch and duration paradigms. RESULTS: Subjective symptoms showed exposure-related increases in fatigue, mild depression, and memory and concentration problems. Neuropsychological testing revealed a circumscribed effect of aluminum, mainly in tasks demanding complex attention and the processing of information in the working memory system and in the analysis and recall of abstract visual patterns. The visual EEG analysis revealed pathological findings only for aluminum welders. Mild, diffuse abnormalities were found in 17% of the low-exposure group and 27% of the high-exposure group, and mild to moderate epileptiform abnormalities at a frequency of 7% and 17%, respectively. CONCLUSIONS: Both objective neurophysiological and neuropsychological measures and subjective symptomatology indicated mild but unequivocal findings dose-dependently associated with increased aluminum body burden. The study indicates that the body burden threshold for adverse effect approximates an U-Al value of 4-6 micromol/l and an S-Al value of 0.25-0.35 micromol/l among aluminum welders.  (+info)

Male-mediated spontaneous abortion among spouses of stainless steel welders. (8/289)

OBJECTIVES: Male-mediated spontaneous abortion has never been documented for humans. The welding of stainless steel is associated with the pulmonary absorption of hexavalent chromium, which has genotoxic effects on germ cells in rodents. Clinical and early subclinical spontaneous abortions were examined among spouses of stainless-steel welders. METHODS: A cohort of first-pregnancy planners was recruited from members of the union of metal workers and 3 other trade unions. The cohort was followed for 6 menstrual cycles from the cessation of contraceptive use. Altogether, 280 pregnancies were conceived, of which 35 were detected by human chorionic gonadotrophic hormone analysis and did not survive to a clinically recognized pregnancy. Information on exposure was collected prospectively in relation to the outcome and was available for all cycles resulting in a pregnancy. Information on pregnancy outcome was collected for all 245 clinically recognized pregnancies. RESULTS: Increased risk of spontaneous abortion was found for pregnancies with exposure to paternal stainless-steel welding (adjusted relative risk 3.5, 95% confidence interval 1.3-9.1). The results were consistent in analyses of both biochemically and clinically recognized abortions. There was no increased risk for spontaneous abortion in pregnancies with paternal exposure to the welding of metals other than stainless steel. CONCLUSIONS: Male welding of stainless steel was associated with an increased risk of spontaneous abortion in spouses. A mutagenic effect of hexavalent chromium has been found previously in both somatic and germ cells, and the findings could be due to mutations in the male genome.  (+info)