Action of partially thiolated polynucleotides on the DNA polymerase alpha from regenerating rat liver. (1/1771)

The effects of partially thiolated polynucleotides on the DNA polymerase alpha from regenerating rat liver were investigated. The enzyme was isolated from the nuclear fraction essentially according to the method of Baril et al.; it was characterized as the alpha polymerase on the basis of its response to synthetic templates and its inhibition with N-ethylmaleimide. Although polycytidylic acid had no effect on the DNA polymerase alpha either as a template or as an inhibitor, partially thiolated polycytidylic acid (MPC) was found to be a potent inhibitor, its activity being directly related to its extent of thiolation (percentage of 5-mercaptocytidylate units in the polymer). In comparison, the DNA polymerase beta which was purified from normal rat liver nuclear fraction, was much less sensitive to inhibition by MPC. Analysis of the inhibition of the alpha polymerase by the method of Lineweaver and Burk showed that the inhibitory action of MPC was competitively reversible with the DNA template, but the binding of the 7.2%-thiolated MPC to the enzyme was much stronger than that of the template (Ki/Km less than 0.03). Polyuridylic acid as such showed some inhibitory activity which increased on partial thiolation, but the 8.4%-thiolated polyuridylic acid was less active than the 7.2% MPC. When MPC was annealed with polyinosinic acid, it lost 80% of its inhibitory activity in the double-stranded configuration. However, 1 to 2%-thiolated DNA isolates were significantly more potent inhibitors than were comparable (1.2%-thiolated) MPC and showed competitive reversibility with the unmodified (but "activated") DNA template. These results indicate that the inhibitory activities of partially thiolated polynucleotides depend not only on the percentage of 5-mercapto groups but also on the configuration, base composition, and other specific structural properties.  (+info)

C/EBPalpha regulates generation of C/EBPbeta isoforms through activation of specific proteolytic cleavage. (2/1771)

C/EBPalpha and C/EBPbeta are intronless genes that can produce several N-terminally truncated isoforms through the process of alternative translation initiation at downstream AUG codons. C/EBPbeta has been reported to produce four isoforms: full-length 38-kDa C/EBPbeta, 35-kDa LAP (liver-enriched transcriptional activator protein), 21-kDa LIP (liver-enriched transcriptional inhibitory protein), and a 14-kDa isoform. In this report, we investigated the mechanisms by which C/EBPbeta isoforms are generated in the liver and in cultured cells. Using an in vitro translation system, we found that LIP can be generated by two mechanisms: alternative translation and a novel mechanism-specific proteolytic cleavage of full-length C/EBPbeta. Studies of mice in which the C/EBPalpha gene had been deleted (C/EBPalpha-/-) showed that the regulation of C/EBPbeta proteolysis is dependent on C/EBPalpha. The induction of C/EBPalpha in cultured cells leads to induced cleavage of C/EBPbeta to generate the LIP isoform. We characterized the cleavage activity in mouse liver extracts and found that the proteolytic cleavage activity is specific to prenatal and newborn livers, is sensitive to chymostatin, and is completely abolished in C/EBPalpha-/- animals. The lack of cleavage activity in the livers of C/EBPalpha-/- mice correlates with the decreased levels of LIP in the livers of these animals. Analysis of LIP production during liver regeneration showed that, in this system, the transient induction of LIP is dependent on the third AUG codon and most likely involves translational control. We propose that there are two mechanisms by which C/EBPbeta isoforms might be generated in the liver and in cultured cells: one that is determined by translation and a second that involves C/EBPalpha-dependent, specific proteolytic cleavage of full-length C/EBPbeta. The latter mechanism implicates C/EBPalpha in the regulation of posttranslational generation of the dominant negative C/EBPbeta isoform, LIP.  (+info)

Chromatin structure: a property of the higher structures of chromatin and in the time course of its formation during chromatin replication. (3/1771)

The action of a number of enzymes and metals on one nuclear preparation were interpreted in terms of the existence of a fragile but highly DNAase-I resistant feature of chromatin superstructure. The generation of this DNAase-I resistance feature of chromatin was then followed during normal DNA synthesis in the regenerating rat liver by following the disappearance of a transitory DNAase-I susceptible state. This transitory, DNAase-I susceptible state appears to be extremely similar to the post-synthetic, DNAase-I susceptible state that has been described in He La32.  (+info)

Transplanted hepatocytes proliferate differently after CCl4 treatment and hepatocyte growth factor infusion. (4/1771)

To understand regulation of transplanted hepatocyte proliferation in the normal liver, we used genetically marked rat or mouse cells. Hosts were subjected to liver injury by carbon tetrachloride (CCl4), to liver regeneration by a two-thirds partial hepatectomy, and to hepatocellular DNA synthesis by infusion of hepatocyte growth factor for comparative analysis. Transplanted hepatocytes were documented to integrate in periportal areas of the liver. In response to CCl4 treatments after cell transplantation, the transplanted hepatocyte mass increased incrementally, with the kinetics and magnitude of DNA synthesis being similar to those of host hepatocytes. In contrast, when cells were transplanted 24 h after CCl4 administration, transplanted hepatocytes appeared to be injured and most cells were rapidly cleared. When hepatocyte growth factor was infused into the portal circulation either subsequent to or before cell transplantation and engraftment, transplanted cell mass did not increase, although DNA synthesis rates increased in cultured primary hepatocytes as well as in intact mouse and rat livers. These data suggested that procedures causing selective ablation of host hepatocytes will be most effective in inducing transplanted cell proliferation in the normal liver. The number of transplanted hepatocytes was not increased in the liver by hepatocyte growth factor administration. Repopulation of the liver with genetically marked hepatocytes can provide effective reporters for studying liver growth control in the intact animal.  (+info)

Behavior of transaldolase (EC 2.2.1.2) and transketolase (EC 2.2.1.1) Activities in normal, neoplastic, differentiating, and regenerating liver. (5/1771)

The objective of this investigation was to throw light on the biological behavior and metabolic regulation of hepatic enzymes of the nonoxidative branch of the pentose phosphate pathway. The activities of transaldolase (EC 2.2.1.2) and trasketolase (EC 2.2.1.1) Were compared in biological conditions that involve modulation of gene expression such as in starvation, in differentiation, after partial hepatectomy, and in a spectrum of hepatomas of different growth rates. The enzyme activities were determined under optimal kinetic conditions by spectrophotometric methods in the 100,000 X g supernatant fluids prepared from tissue homogenates. The kinetic properties of transaldolase and transketolase were similar in normal liver and in rapidly growing hepatoma 3924A. For transaldolase, apparent Km values of 0.13 mM (normal liver) and 0.17 mM (hepatoma) were observed for erythrose 4-phosphate and of 0.30 to 0.35 mM for fructose 6-phosphate. The pH optima in liver and hepatoma were at approximately 6.9 to 7.2. For the transketolase substrates, ribose 5-phosphate and xylulose 5-phosphate, the apparent Km values were 0.3 and 0.5 mM, respectively, in both liver and hepatoma. A broad pH optimum around 7.6 was observed in both tissues. In organ distribution studies, enzyme activities were measured in liver, intestinal mucosa, thymus, kidney, spleen, brain, adipose tissue, lung, heart, and skeletal muscle. Taking the specific activity of liver as 100%, transaldolase activity was the highest in intestinal mucosa (316%) and in thymus (219%); it was the lowest in heart (53%) and in skeletal muscle (21%). Transketolase activity was highest in kidney (155%) and lowest in heart (26%) and skeletal muscle (23%). Starvation decreased transaldolase and transketolase activities in 6 days to 69 and 74%, respectively, of those of the liver of the normal, fed rat. This was in the same range as the decrease in the protein concentration (66%y. In the liver tumors, transaldolase activity was increased 1.5- to 3.4-fold over the activities observed in normal control rat liver. Transketolase activity showed no relationship to tumor proliferation rate. In the regenerating liver at 24 hr after partial hepatectomy, the activity of both pentose phosphate pathway enzymes was in the same range as that of the sham-operated controls. In differentiation at the postnatal age of 5, 12, 23, and 32 days, hepatic transaldolase activities were 33, 44, 55, and 72%, respectively, of the activities observed in the 60-day-old, adult male rat. During the same period, transketolase activ-ties were 18, 21, 26, and 55% of the activities observed in liver of adult rat. The demonstration of increased transaldolase activity in hepatomas, irrespective of the degree of tumor malignancy, differentiation, or growth rate, suggests that the reprogramming of gene expression in malignant transformation is linked with an increase in the expression of this pentose phosphate pathway enzyme...  (+info)

Quercetin inhibited DNA synthesis and induced apoptosis associated with increase in c-fos mRNA level and the upregulation of p21WAF1CIP1 mRNA and protein expression during liver regeneration after partial hepatectomy. (6/1771)

Quercetin, a widely distributed bioflavonoid, inhibited DNA synthesis in regenerating liver after partial hepatectomy. This inhibition was accompanied by apoptosis, evidenced by in situ end-labeling and gel electrophoresis of DNA fragmentation. Characteristic DNA fragmentation was detected as early as 2 h after injection. Northern blot analysis revealed that quercetin induced the increases in c-fos and p21WAF1CIP1 mRNA levels within 2 h. The expression of p21 protein was also enhanced, while p53 mRNA and protein levels were not affected by quercetin. These results suggest that quercetin-induced apoptosis is associated with the increase in c-fos mRNA level and the upregulation of p21 mRNA and protein expression, probably in a p53-independent pathway.  (+info)

Nucleolar DNA-dependent RNA polymerase from rat liver. 2. Two forms and their physiological significance. (7/1771)

RNA polymerase I (or A) was extracted from nuclear, nucleolar and nucleoplasmic fractions, and resolved into IA and IB forms on a phosphocellulose column. During the course of cycloheximide treatment, the activity of RNA polymerase IB decreased in the nucleoli with concomitant increase in the nucleoplasmic fraction, suggesting strongly that cycloheximide induced specific leakage of IB enzyme from the nucleolus. The activity of IA enzyme did not change in the nucleoli. When nucleoli were incubated in the presence of actinomycin D, all the IA enzyme activity and approximately 30% of the total IB enzyme activity were released in the incubation medium, whereaa 70% of IB activity remained associated with the nucleolar pellet where no IA activity was detected. The enzyme which was released into the incubation medium was tentatively designated as free or unbound RNA polymerase I and that which was associated with the nucleolar pellet as template-bound enzyme. During the treatment with cycloheximide, the activity of bound enzyme, which contained exclusively IB form, decreased rapidly, with kinetics almost identical to that of nucleolar RNA synthesis in vivo. The activity of free enzyme did not change appreciably. At 2 h after partial hepatectomy, IB enzyme activity in the free RNA polymerase fraction increased to almost twice the control, while the bound enzyme activity did not increase appreciably until 4h of regeneration. Enhancement of nucleolar RNA synthesis in vivo was not apparent at 2 h but became significant by 4 h after partial hepatectomy. These results strongly suggest that (a) the above-mentioned procedure is actually fractionating RNA polymerase I into free and bound forms, (b) RNA polymerase IB is the transcriptionally active form in vivo, (c) RNA polymerase IB exists in excess in the nucleoli, but the amount of bound IB molecules, which are engaged in transcription in vivo, must be determined by some other factor(s) than the mere concentration of IB enzyme in the nucleolus, and (d) IA form is not an artifact of isolation but is always present in vivo at a certain amount, although the exact nature of this molecule is not known at present.  (+info)

Effect of cyclosporine A on cytochrome P-450-mediated drug metabolism in the partially hepatectomized rat. (8/1771)

Despite its hepatotoxic potential, cyclosporine A (CsA) has been reported to positively influence compensatory liver growth. To probe the physiological consequences of CsA on the recovery of liver function, studies were initiated in the 2/3 partially hepatectomized (PHx) rat, taking the recovery of cytochromes P-450-dependent drug metabolism as primary outcome. CsA was administered at a dose of 3. 33 mg/kg/day for 10 days. Drug metabolism was evaluated by the recovery of 14CO2 after administration of isotopically labeled model drugs and by studying the expression of the P-450 transcripts involved in their biotransformation before and 24 to 96 h after PHx. Before PHx, neither the steady-state mRNA nor the in vivo disposition of caffeine (CYP1A2), erythromycin (CYP3A2 and 3A1), or aminopyrine (CYP2B1 and 2C11) were influenced by CsA. Studies 24 h after PHx revealed a 29 to 39% reduction in the elimination of [14C]aminopyrine and [14C]erythromycin, which was unaffected by CsA. Their metabolism at 48 to 96 h after PHx also remained unaffected by CsA. By contrast, postPHx, [14C]caffeine elimination decreased to a level closely proportional to the loss in liver mass. In addition, CsA accelerated the recovery and/or prevented the decrease of caffeine elimination 24 h after PHx but not at later time points, indicating an early, but unsustained, beneficial effect of CsA on the recovery of CYP1A2-mediated activities. These data show that at the critical time of greatest loss in liver mass, CsA has only a selective influence on the biotransformation of cytochrome P-450 protein-dependent activities and that its effect on the regeneration process does not translate into an overall accelerated recovery of the hepatic drug-metabolizing function.  (+info)