A mutant deubiquitinating enzyme (Ubp-M) associates with mitotic chromosomes and blocks cell division. (57/16452)

A new ubiquitin-processing protease (Ubp-M) has been identified in mammalian cells that is phosphorylated at the onset of mitosis and dephosphorylated during the metaphase/anaphase transition. The carboxyl-terminal domain of this 823-aa protein can be phosphorylated in vitro with either extracts of mitotic cells or purified cdc-2/cyclin B complexes. Recombinant Ubp-M is able to deubiquitinate histone H2A in vitro, and the phosphorylated form is also enzymatically active. Wild-type Ubp-M, transiently expressed as green fluorescent protein-fusion proteins, localizes in the cytoplasm of cultured cells, but mutant forms, lacking an active-site cysteine, associate closely with mitotic chromosomes during all stages of cell division and remain within the nucleus during the postmitotic period. Cells transfected with plasmids containing mutant Ubp-M genes stop dividing and eventually undergo apoptosis. Ubp-M may deubiquitinate one or more critical proteins that are involved in the condensation of mitotic chromosomes, possibly acting selectively on histones H2A and H2B, the major ubiquitinated proteins of chromatin.  (+info)

A cloning method to identify caspases and their regulators in yeast: identification of Drosophila IAP1 as an inhibitor of the Drosophila caspase DCP-1. (58/16452)

Site-specific proteases play critical roles in regulating many cellular processes. To identify novel site-specific proteases, their regulators, and substrates, we have designed a general reporter system in Saccharomyces cerevisiae in which a transcription factor is linked to the intracellular domain of a transmembrane protein by protease cleavage sites. Here, we explore the efficacy of this approach by using caspases, a family of aspartate-specific cysteine proteases, as a model. Introduction of an active caspase into cells that express a caspase-cleavable reporter results in the release of the transcription factor from the membrane and subsequent activation of a nuclear reporter. We show that known caspases activate the reporter, that an activator of caspase activity stimulates reporter activation in the presence of an otherwise inactive caspase, and that caspase inhibitors suppress caspase-dependent reporter activity. We also find that, although low or moderate levels of active caspase expression do not compromise yeast cell growth, higher level expression leads to lethality. We have exploited this observation to isolate clones from a Drosophila embryo cDNA library that block DCP-1 caspase-dependent yeast cell death. Among these clones, we identified the known cell death inhibitor DIAP1. We showed, by using bacterially synthesized proteins, that glutathione S-transferase-DIAP1 directly inhibits DCP-1 caspase activity but that it had minimal effect on the activity of a predomainless version of a second Drosophila caspase, drICE.  (+info)

Molecular cloning and characterization of prostase, an androgen-regulated serine protease with prostate-restricted expression. (59/16452)

The identification of genes with selective expression in specific organs or cell types provides an entry point for understanding biological processes that occur uniquely within a particular tissue. Using a subtraction approach designed to identify genes preferentially expressed in specific tissues, we have identified prostase, a human serine protease with prostate-restricted expression. The prostase cDNA encodes a putative 254-aa polypeptide with a conserved serine protease catalytic triad and an amino-terminal pre-propeptide sequence, indicating a potential secretory function. The genomic sequence comprises five exons and four introns and contains multiple copies of a chromosome 19q-specific minisatellite repeat. Northern analysis indicates that prostase mRNA is expressed in hormonally responsive normal and neoplastic prostate epithelial tissues, but not in prostate stromal constituents. Prostase shares 35% amino acid identity with prostate-specific antigen (PSA) and 78% identity with the porcine enamel matrix serine proteinase 1, an enzyme involved in enamel matrix degradation and with a putative role in the disruption of intercellular junctions. Radiation-hybrid-panel mapping localized prostase to chromosome 19q13, a region containing several other serine proteases, including protease M, pancreatic/renal kallikrein hK1, and the prostate-specific kallikreins hK2 and hK3 (PSA). The sequence homology between prostase and other well-characterized serine proteases suggests several potential functional roles for the prostase protein that include the degradation of extracellular matrix and the activation of PSA and other proteases.  (+info)

Functions of Bruton's tyrosine kinase in mast and B cells. (60/16452)

Bruton's tyrosine kinase (Btk) plays crucial roles in B cell differentiation as well as mast cell activation through the high-affinity IgE receptor (FcepsilonRI). Defects in the btk gene lead to agammaglobulinemia (XLA) in humans and X-linked immunodeficiency (xid) in mice. Mast cells from xid and btk null mice exhibit mild defects in degranulation and severe impairments in the production of proinflammatory cytokines upon FcepsilonRI cross-linking. Recent studies demonstrated the role of Btk in a sustained increase in intracellular calcium concentrations in response to antigen receptor stimulation. Btk is also involved in the activation of stress-activated protein kinases, JNK/SAPK1/2, and thereby regulates c-Jun and other transcription factors that are important in cytokine gene activation. Regulation of the JNK/SAPK activation pathway by Btk may be related to the proapoptotic function of Btk in the programmed cell death in these hematopoietic cells.  (+info)

Mitogen-activated protein kinase/ERK kinase kinases 2 and 3 activate nuclear factor-kappaB through IkappaB kinase-alpha and IkappaB kinase-beta. (61/16452)

Recent evidence indicates that nuclear factor-kappaB (NF-kappaB), a transcription factor critically important for immune and inflammatory responses, is activated by a protein kinase cascade. The essential features of this cascade are that a mitogen-activated protein kinase kinase kinase (MAP3K) activates an IkappaB kinase (IKK) that site-specifically phosphorylates IkappaB. The IkappaB protein, which ordinarily sequesters NF-kappaB in the cytoplasm, is subsequently degraded by the ubiquitin-proteasome pathway, thereby allowing the nuclear translocation of NF-kappaB. Thus far, only two MAP3Ks, NIK and MEKK1, have been identified that can activate this pathway. We now show that MEKK2 and MEKK3 can in vivo activate IKK-alpha and IKK-beta, induce site-specific IkappaBalpha phosphorylation, and, relatively modestly, activate an NF-kappaB reporter gene. In addition, dominant negative versions of either IKK-alpha or IKK-beta abolish NF-kappaB activation induced by MEKK2 or MEKK3, thereby providing evidence that these IKKs mediate the NF-kappaB-inducing activities of these MEKKs. In contrast, other MAP3Ks, including MEKK4, ASK1, and MLK3, fail to show evidence of activation of the NF-kappaB pathway. We conclude that a distinct subset of MAP3Ks can activate NF-kappaB.  (+info)

Molecular cloning of two new human paralogs of 85-kDa cytosolic phospholipase A2. (62/16452)

Two new cloned human cDNAs encode paralogs of the 85-kDa cytosolic phospholipase A2 (cPLA2). We propose to call these cPLA2beta (114 kDa) and cPLA2gamma (61 kDa), giving the name cPLA2alpha to the well known 85-kDa enzyme. cPLA2beta mRNA is expressed more highly in cerebellum and pancreas and cPLA2gamma more highly in cardiac and skeletal muscle. Sequence-tagged site mapping places cPLA2beta on chromosome 15 in a region near a phosphoinositol bisphosphate phosphatase. The mRNA for cPLA2beta is spliced only at a very low level, and Northern blots in 24 tissues show exclusively the unspliced form. cPLA2beta has much lower activity on 2-arachidonoyl-phosphatidylcholine liposomes than either of the other two enzymes. Its sequence contains a histidine motif characteristic of the catalytic center of caspase proteases of the apoptotic cascade but no region characteristic of the catalytic cysteine. Sequence-tagged site mapping places cPLA2gamma on chromosome 19 near calmodulin. cPLA2gamma lacks the C2 domain, which gives cPLA2alpha its Ca2+ sensitivity, and accordingly cPLA2gamma has no dependence upon calcium, although cPLA2beta does. cPLA2gamma contains a prenyl group-binding site motif and appears to be largely membrane-bound. cPLA2alpha residues activated by phosphorylation do not appear to be well conserved in either new enzyme. In contrast, all three previously known catalytic residues, as well as one additional essential arginine, Arg-566 in cPLA2alpha, are conserved in both new enzyme sequences. Mutagenesis shows strong dependence on these residues for catalytic activity of all three enzymes.  (+info)

Transcriptional activation following cerebral ischemia in mice of a promoter-deleted nitric oxide synthase-2 gene. (63/16452)

Nitric oxide synthase (NOS)-2 is transcriptionally activated in a wide variety of injurious conditions, including cerebral ischemia, and the resulting nitric oxide is implicated both in tissue damage and recovery. Studies in vitro suggest that the proximal region of the NOS-2 promoter is obligatory for gene activation by proinflammatory cytokines. However, following cerebral ischemia in a NOS-2 gene-deficient mouse in which this region and exons 1-4 have been deleted, we find temporal and spatial expression, identical to wild-type, from a previously unidentified promoter region. The resulting protein is predicted to lack the first 113 amino acids and is NOS-2-incompetent. Fortuitously, this gene-deficient mouse presents a unique opportunity to determine more about the mechanisms of NOS-2 gene regulation in vivo.  (+info)

Interactions between two cytoskeleton-associated tyrosine kinases: calcium-dependent tyrosine kinase and focal adhesion tyrosine kinase. (64/16452)

The calcium-dependent tyrosine kinase (CADTK), also known as Pyk2/RAFTK/CAKbeta/FAK2, is a cytoskeleton-associated tyrosine kinase. We compared CADTK regulation with that of the highly homologous focal adhesion tyrosine kinase (FAK). First, we generated site-specific CADTK mutants. Mutation of Tyr402 eliminated autophosphorylation and significantly decreased kinase activity. Mutation of Tyr881, a putative Src kinase phosphorylation site predicted to bind Grb2, had little effect on CADTK regulation. Src family tyrosine kinases resulted in CADTK tyrosine phosphorylation even when co-expressed with the Tyr402/Tyr881 double mutant, suggesting that Src/Fyn etc. phosphorylate additional tyrosine residues. Interestingly, CADTK tyrosine-phosphorylated FAK when both were transiently expressed, but FAK did not phosphorylate CADTK. Biochemical experiments confirmed direct CADTK phosphorylation of FAK. This phosphorylation utilized tyrosine residues other than Tyr397, Tyr925, or Tyr576/Tyr577, suggesting that new SH2-binding sites might be created by CADTK-dependent FAK phosphorylation. Last, expression of the CADTK carboxyl terminus (CRNK) abolished CADTK but not FAK autophosphorylation. In contrast, FAK carboxyl terminus overexpression inhibited both FAK and CADTK autophosphorylation, suggesting that a FAK-dependent cytoskeletal function may be necessary for CADTK activation. Thus, CADTK and FAK, which both bind to some, but not necessarily the same, cytoskeletal elements, may be involved in coordinate regulation of cytoskeletal structure and signaling.  (+info)