Hfq is necessary for regulation by the untranslated RNA DsrA. (1/322)

DsrA is an 85-nucleotide, untranslated RNA that has multiple regulatory activities at 30 degrees C. These activities include the translational regulation of RpoS and H-NS, global transcriptional regulators in Escherichia coli. Hfq is an E. coli protein necessary for the in vitro and in vivo replication of the RNA phage Qbeta. Hfq also plays a role in the degradation of numerous RNA transcripts. Here we show that an hfq mutant strain is defective for DsrA-mediated regulation of both rpoS and hns. The defect in rpoS expression can be partially overcome by overexpression of DsrA. Hfq does not regulate the transcription of DsrA, and DsrA does not alter the accumulation of Hfq. However, in an hfq mutant, chromosome-expressed DsrA was unstable (half-life of 1 min) and truncated at the 3' end. When expressed from a multicopy plasmid, DsrA was stable in both wild-type and hfq mutant strains, but it had only partial activity in the hfq mutant strain. Purified Hfq binds DsrA in vitro. These results suggest that Hfq acts as a protein cofactor for the regulatory activities of DsrA by either altering the structure of DsrA or forming an active RNA-protein complex.  (+info)

Signal transduction cascade for regulation of RpoS: temperature regulation of DsrA. (2/322)

Many environmental parameters modulate the amount of the RpoS sigma factor in Escherichia coli. Temperature control of RpoS depends on the untranslated RNA DsrA. DsrA activates RpoS translation by pairing with the leader of the mRNA. We find that temperature affects both the rate of transcription initiation of the dsrA gene and the stability of DsrA RNA. Both are increased at low temperature (25 degrees C) compared to 37 or 42 degrees C. The combination of these results is 25-fold-less DsrA at 37 degrees C and 30-fold less at 42 degrees C than at 25 degrees C. Using an adapted lacZ-based reporter system, we show that temperature control of transcription initiation of dsrA requires only the minimal promoter of 36 bp. Overall, transcription responses to temperature lead to a sixfold increase in DsrA synthesis at 25 degrees C over that at 42 degrees C. Furthermore, two activating regions and a site for LeuO negative regulation were identified in the dsrA promoter. The activating regions also activate transcription in vitro. DsrA decays with a half-life of 23 min at 25 degrees C and 4 min at 37 and 42 degrees C. These results demonstrate that the dsrA promoter and the stability of DsrA RNA are the thermometers for RpoS temperature sensing. Multiple inputs to DsrA accumulation allow sensitive modulation of changes in the synthesis of the downstream targets of DsrA such as RpoS.  (+info)

The small noncoding DsrA RNA is an acid resistance regulator in Escherichia coli. (3/322)

DsrA RNA is a small (87-nucleotide) regulatory RNA of Escherichia coli that acts by RNA-RNA interactions to control translation and turnover of specific mRNAs. Two targets of DsrA regulation are RpoS, the stationary-phase and stress response sigma factor (sigmas), and H-NS, a histone-like nucleoid protein and global transcription repressor. Genes regulated globally by RpoS and H-NS include stress response proteins and virulence factors for pathogenic E. coli. Here, by using transcription profiling via DNA arrays, we have identified genes induced by DsrA. Steady-state levels of mRNAs from many genes increased with DsrA overproduction, including multiple acid resistance genes of E. coli. Quantitative primer extension analysis verified the induction of individual acid resistance genes in the hdeAB, gadAX, and gadBC operons. E. coli K-12 strains, as well as pathogenic E. coli O157:H7, exhibited compromised acid resistance in dsrA mutants. Conversely, overproduction of DsrA from a plasmid rendered the acid-sensitive dsrA mutant extremely acid resistant. Thus, DsrA RNA plays a regulatory role in acid resistance. Whether DsrA targets acid resistance genes directly by base pairing or indirectly via perturbation of RpoS and/or H-NS is not known, but in either event, our results suggest that DsrA RNA may enhance the virulence of pathogenic E. coli.  (+info)

Functional dissection of sRNA translational regulators by nonhomologous random recombination and in vivo selection. (4/322)

Small nontranslated RNAs (sRNAs) regulate a variety of biological processes. DsrA and OxyS are two E. coli sRNAs that regulate the translation of rpoS, which encodes a protein sigma factor. Due to their structural complexity, the functional dissection of sRNAs solely by designing and assaying mutants can be challenging. Here, we present a complementary approach to the study of functional RNAs, in which highly diversified RNA libraries are generated by nonhomologous random recombination (NRR) and processed efficiently by in vivo selections that link RNA activities to cell survival. When applied to DsrA and OxyS, this approach rapidly identified essential and nonessential regions of both sRNAs. Resulting hypotheses about DsrA and OxyS structure-function relationships were tested and further refined experimentally. Our findings demonstrate an efficient, unbiased approach to the functional dissection of nucleic acids.  (+info)

Limited role for the DsrA and RprA regulatory RNAs in rpoS regulation in Salmonella enterica. (5/322)

RpoS, the sigma factor of enteric bacteria that responds to stress and stationary phase, is subject to complex regulation acting at multiple levels, including transcription, translation, and proteolysis. Increased translation of rpoS mRNA during growth at low temperature, after osmotic challenge, or with a constitutively activated Rcs phosphorelay depends on two trans-acting small regulatory RNAs (sRNAs) in Escherichia coli. The DsrA and RprA sRNAs are both highly conserved in Salmonella enterica, as is their target, an inhibitory antisense element within the rpoS untranslated leader. Analysis of dsrA and rprA deletion mutants indicates that while the increased translation of RpoS in response to osmotic challenge is conserved in S. enterica, dependence on these two sRNA regulators is much reduced. Furthermore, low-temperature growth or constitutive RcsC activation had only modest effects on RpoS expression, and these increases were, respectively, independent of dsrA or rprA function. This lack of conservation of sRNA function suggests surprising flexibility in RpoS regulation.  (+info)

Highly sensitive genotyping using artificial riboregulator system. (6/322)

A molecular-beacon-type riboregulator (mRNA) was applied to multiply catalytic gene sensing. It consists of a reporter gene for firefly protein luciferase and, upstream thereof, a regulator hairpin domain composed of an RBS/anti-RBS stem (RBS = ribosome binding site) and a loop which is complementary to the target. The sensing of target gene, using an unmodified RNA or even dsDNA as a probe with a chemiluminescence output, was demonstrated with a sensitivity at < or = 50 fmol of the target and a single nucleotide resolution.  (+info)

Spectroscopic observation of RNA chaperone activities of Hfq in post-transcriptional regulation by a small non-coding RNA. (7/322)

Hfq protein is vital for the function of many non-coding small (s)RNAs in bacteria but the mechanism by which Hfq facilitates the function of sRNA is still debated. We developed a fluorescence resonance energy transfer assay to probe how Hfq modulates the interaction between a sRNA, DsrA, and its regulatory target mRNA, rpoS. The relevant RNA fragments were labelled so that changes in intra- and intermolecular RNA structures can be monitored in real time. Our data show that Hfq promotes the strand exchange reaction in which the internal structure of rpoS is replaced by pairing with DsrA such that the Shine-Dalgarno sequence of the mRNA becomes exposed. Hfq appears to carry out strand exchange by inducing rapid association of DsrA and a premelted rpoS and by aiding in the slow disruption of the rpoS secondary structure. Unexpectedly, Hfq also disrupts a preformed complex between rpoS and DsrA. While it may not be a frequent event in vivo, this melting activity may have implications in the reversal of sRNA-based regulation. Overall, our data suggests that Hfq not only promotes strand exchange by binding rapidly to both DsrA and rpoS but also possesses RNA chaperoning properties that facilitates dynamic RNA-RNA interactions.  (+info)

The C-terminal domain of Escherichia coli Hfq is required for regulation. (8/322)

The Escherichia coli RNA chaperone Hfq is involved in riboregulation of target mRNAs by small trans-encoded non-coding (ncRNAs). Previous structural and genetic studies revealed a RNA-binding surface on either site of the Hfq-hexamer, which suggested that one hexamer can bring together two RNAs in a pairwise fashion. The Hfq proteins of different bacteria consist of an evolutionarily conserved core, whereas there is considerable variation at the C-terminus, with the gamma- and beta-proteobacteria possessing the longest C-terminal extension. Using different model systems, we show that a C-terminally truncated variant of Hfq (Hfq(65)), comprising the conserved hexameric core of Hfq, is defective in auto- and riboregulation. Although Hfq(65) retained the capacity to bind ncRNAs, and, as evidenced by fluorescence resonance energy transfer assays, to induce structural changes in the ncRNA DsrA, the truncated variant was unable to accommodate two non-complementary RNA oligonucleotides, and was defective in mRNA binding. These studies indicate that the C-terminal extension of E. coli Hfq constitutes a hitherto unrecognized RNA interaction surface with specificity for mRNAs.  (+info)