Using attainment of the designated aquatic life use to determine adverse environmental impact. (17/1318)

Section 316(b) of the Clean Water Act requires that cooling-water intake structures (CWIS) use Best Technology Available (BTA) to minimize adverse environmental impacts (AEI). The U.S. EPA has not defined AEI, and there is no clear consensus regarding its definition. Nonetheless, operational definitions are necessary to evaluate design alternatives and to measure the success of mitigative measures. Rather than having to develop measures of aquatic health that are highly site-specific, controversial, and often unlikely to elicit agreement from all sides of the environmental "fence", " it may be more productive to use existing ecological assessment tools. Aquatic Life Uses (ALU) already provide a regulatory framework to assess the quality (health) of the aquatic community in various habitats (e.g., warmwater habitat, exceptional warmwater habitat). Attainment of the ALU indicates that further point source controls are unnecessary, whereas nonattainment indicates that those pollutants or stressors causing the nonattainment must be reduced. A similar approach for existing water intakes is recommended. That is, attainment of the designated ALU will be taken as an indication that there is no AEI. Although attainment of the ALU may not be a foolproof indicator of a lack of AEI, this approach seems more reasonable that using scarce monetary resources to fix problems that likely do not exist, or having both regulators and the regulated community expend their resources debating whether various observed biological responses do or do not constitute AEI.  (+info)

Effective monitoring of small river basins. (18/1318)

As the transport of many pollutants occurs during high floods monitoring programs must focus on these intermittent events. In small rivers the pollutants start their travel as short pulses often associated with fine particles, but disperse on their way downstreams. Therefore the chemical data of a flood event are only representative of a small part of the basin adjacent to the monitoring station. This is usually not taken into account by evaluating water quality data.  (+info)

Uncertainty and conservatism in assessing environmental impact under paragraph 316(b): lessons from the Hudson River case. (19/1318)

Initially, regulation of cooling water intakes under paragraph 316(b) was extremely conservative due to the rapid increase predicted for generating capacity, and to the uncertainty associated with our knowledge of the effects of entrainment and impingement. The uncertainty arose from four main sources: estimation of direct plant effects; understanding of population regulatory processes; measurement of population parameters; and predictability of future conditions. Over the last quarter-century, the uncertainty from the first three sources has been substantially reduced, and analytical techniques exist to deal with the fourth. In addition, the dire predictions initially made for some water bodies have not been realized, demonstrating that populations can successfully withstand power plant impacts. This reduced uncertainty has resulted in less conservative regulation in some, but not all venues. New York appears to be taking a more conservative approach to cooling water intakes. The conservative approach is not based on regulations, but in a philosophy that power plant mortality is an illegitimate use of the aquatic resources. This philosophy may simplify permitting decisions, but it does not further the development of a science-based definition of adverse environmental impact.  (+info)

Modeling possible cooling-water intake system impacts on Ohio River fish populations. (20/1318)

To assess the possible impacts caused by cooling-water intake system entrainment and impingement losses, populations of six target fish species near power plants on the Ohio River were modeled. A Leslie matrix model was constructed to allow an evaluation of bluegill, freshwater drum, emerald shiner, gizzard shad, sauger, and white bass populations within five river pools. Site-specific information on fish abundance and length-frequency distribution was obtained from long-term Ohio River Ecological Research Program and Ohio River Sanitation Commission (ORSANCO) electrofishing monitoring programs. Entrainment and impingement data were obtained from 316(b) demonstrations previously completed at eight Ohio River power plants. The model was first run under a scenario representative of current conditions, which included fish losses due to entrainment and impingement. The model was then rerun with these losses added back into the populations, representative of what would happen if all entrainment and impingement losses were eliminated. The model was run to represent a 50-year time period, which is a typical life span for an Ohio River coal-fired power plant. Percent changes between populations modeled with and without entrainment and impingement losses in each pool were compared to the mean interannual coefficient of variation (CV), a measure of normal fish population variability. In 6 of the 22 scenarios of fish species and river pools that were evaluated (6 species x 5 river pools, minus 8 species/river pool combinations that could not be evaluated due to insufficient fish data), the projected fish population change was greater than the expected variability of the existing fish population, indicating a possible adverse environmental impact. Given the number of other variables affecting fish populations and the conservative modeling approach, which assumed 100% mortality for all entrained fish and eggs, it was concluded that the likelihood of impact was by no means assured, even in these six cases. It was concluded that in most cases, current entrainment and impingement losses at six Ohio River power plants have little or no effect at the population level.  (+info)

Optimisation of the monitoring strategy of macroinvertebrate communities in the river Dender, in relation to the EU Water Framework Directive. (21/1318)

The Dender basin in Flanders (Belgium) was used as a case study to implement the European Union (EU) Water Framework Directive. During the last 5 years, ample research on pollution loads and ecological water quality has been done on the Dender River. In addition to biological sampling of macroinvertebrates and fish, automated measurement stations were also used to investigate the spatial-temporal variability of the physical-chemical water quality. This research revealed that the pollution of the Dender River is highly variable. The high nutrient loads result in severe algae blooms during summer, leading to very complex diurnal processes. In this paper, the monitoring strategy for the assessment of the biological water quality in the Dender basin has been reviewed in relation to the EU Water Framework Directive. For this, seasonal macroinvertebrate data were collected and assessed. General trends and hidden structures in these data were analysed by means of classification trees, using different inputs (seasons, river types, and subbasins). Validation of the results was obtained by applying statistical methods. Analysis about the presence and abundance of the macroinvertebrates revealed that there is a distinct difference between the biological water quality in the Dender stem river and its tributaries. There are also seasonal differences between the macroinvertebrate communities when the Dender and its tributaries are examined separately. An optimised monitoring strategy is proposed based on these results and the EU Water Framework Directive. This includes two monitoring campaigns in summer and winter every 3 years. Furthermore, a cyclic monitoring scheme was developed to minimise sampling efforts.  (+info)

Functional evaluations in the monitoring of the river ecosystem processes: the Adige River as a case stu. (22/1318)

A model of analysis and environmental evaluation was applied to 11 stretches of the Adige River, where an innovative procedure was carried out to interpret ecological results. Within each stretch, the most suitable methods were used to assess the quality and processes of flood plains, banks, water column, bed, and interstitial environment. Indices were applied to evaluate the wild state and ecological quality of the banks (wild state index, buffer strip index) and the landscape quality of wide areas of the fluvial corridor (environmental landscape index). The biotic components (i.e., macrozoobenthos, phytoplankton and zooplankton, interstitial hyporheic fauna, vegetation in the riparian areas) were analysed by both quantitative and functional methods (as productivity, litter--processing and colonisation). The results achieved were then translated into five classes of functional evaluation. These qualitative assessments have thus preserved a high level of precision and sensitivity in quantifying both the quality of the environmental conditions and the integrity of the ecosystem processes. Read together with urban planning data, they indicate what actions are needed to restore and rehabilitate the Adige River corridor.  (+info)

Downstream effects of a hydroelectric reservoir on aquatic plant assemblages. (23/1318)

Macrophytes were studied downstream of the Rophemel hydroelectric dam on the River Rance (Cotes d'Armor Department, western France) to assess the effects of hydroelectric functioning on river macrophyte communities. We studied ten representative sections of the hydro-peaking channel on five occasions in 1995 and 1996, on a 15-km stretch of river. Floristic surveys were carried out on sections 50 m in length, and genera of macroalgae, species of bryophyta, hydrophytes, and emergent rhizophytes were identified. For the aquatic bryophytes and spermatophytes section of our study, we compared our results with 19th century floristic surveys, before the dam was built. During the vegetative growth period, the hydro-peaking frequency was low. The plant richness was highest near the dam. The macrophyte communities were highly modified according to the distance to the dam. The frequency and magnitude of hydro-peaking was related to the aquatic macrophyte richness in an Intermediate Disturbance Hypothesis position. However, the results of the eco-historical comparison with 19th century floristic surveys point to the original nature of the flora found at the site. Some floral patterns, seen during both periods and at an interval of 133 years, were indicative of the ubiquity of the aquatic flora and of the plants" adaptability. This demonstrates the importance of taking river basin history into account in such biological surveys.  (+info)

Comparison of Artificial Neural Network (ANN) Model Development Methods for Prediction of Macroinvertebrate Communities in the Zwalm River Basin in Flanders, Belgium. (24/1318)

Modelling has become an interesting tool to support decision making in water management. River ecosystem modelling methods have improved substantially during recent years. New concepts, such as artificial neural networks, fuzzy logic, evolutionary algorithms, chaos and fractals, cellular automata, etc., are being more commonly used to analyse ecosystem databases and to make predictions for river management purposes. In this context, artificial neural networks were applied to predict macroinvertebrate communities in the Zwalm River basin (Flanders, Belgium). Structural characteristics (meandering, substrate type, flow velocity) and physical and chemical variables (dissolved oxygen, pH) were used as predictive variables to predict the presence or absence of macroinvertebrate taxa in the headwaters and brooks of the Zwalm River basin. Special interest was paid to the frequency of occurrence of the taxa as well as the selection of the predictors and variables to be predicted on the prediction reliability of the developed models. Sensitivity analyses allowed us to study the impact of the predictive variables on the prediction of presence or absence of macroinvertebrate taxa and to define which variables are the most influential in determining the neural network outputs.  (+info)