Protective effect of HOE642, a selective blocker of Na+-H+ exchange, against the development of rigor contracture in rat ventricular myocytes. (1/16)

The objective of this study was to investigate the effect of Na+-H+ exchange (NHE) and HCO3--Na+ symport inhibition on the development of rigor contracture. Freshly isolated adult rat cardiomyocytes were subjected to 60 min metabolic inhibition (MI) and 5 min re-energization (Rx). The effects of perfusion of HCO3- or HCO3--free buffer with or without the NHE inhibitor HOE642 (7 microM) were investigated during MI and Rx. In HCO3--free conditions, HOE642 reduced the percentage of cells developing rigor during MI from 79 +/- 1% to 40 +/- 4% (P < 0.001) without modifying the time at which rigor appeared. This resulted in a 30% reduction of hypercontracture during Rx (P < 0.01). The presence of HCO3- abolished the protective effect of HOE642 against rigor. Cells that had developed rigor underwent hypercontracture during Rx independently of treatment allocation. Ratiofluorescence measurement demonstrated that the rise in cytosolic Ca2+ (fura-2) occurred only after the onset of rigor, and was not influenced by HOE642. NHE inhibition did not modify Na+ rise (SBFI) during MI, but exaggerated the initial fall of intracellular pH (BCEFC). In conclusion, HOE642 has a protective effect against rigor during energy deprivation, but only when HCO3--dependent transporters are inhibited. This effect is independent of changes in cytosolic Na+ or Ca2+ concentrations.  (+info)

The conformation of myosin head domains in rigor muscle determined by X-ray interference. (2/16)

In the absence of adenosine triphosphate, the head domains of myosin cross-bridges in muscle bind to actin filaments in a rigor conformation that is expected to mimic that following the working stroke during active contraction. We used x-ray interference between the two head arrays in opposite halves of each myosin filament to determine the rigor head conformation in single fibers from frog skeletal muscle. During isometric contraction (force T(0)), the interference effect splits the M3 x-ray reflection from the axial repeat of the heads into two peaks with relative intensity (higher angle/lower angle peak) 0.76. In demembranated fibers in rigor at low force (<0.05 T(0)), the relative intensity was 4.0, showing that the center of mass of the heads had moved 4.5 nm closer to the midpoint of the myosin filament. When rigor fibers were stretched, increasing the force to 0.55 T(0), the heads' center of mass moved back by 1.1-1.6 nm. These motions can be explained by tilting of the light chain domain of the head so that the mean angle between the Cys(707)-Lys(843) vector and the filament axis increases by approximately 36 degrees between isometric contraction and low-force rigor, and decreases by 7-10 degrees when the rigor fiber is stretched to 0.55 T(0).  (+info)

Rigor-like structures from muscle myosins reveal key mechanical elements in the transduction pathways of this allosteric motor. (3/16)

Unlike processive cellular motors such as myosin V, whose structure has recently been determined in a "rigor-like" conformation, myosin II from contracting muscle filaments necessarily spends most of its time detached from actin. By using squid and sea scallop sources, however, we have now obtained similar rigor-like atomic structures for muscle myosin heads (S1). The significance of the hallmark closed actin-binding cleft in these crystal structures is supported here by actin/S1-binding studies. These structures reveal how different duty ratios, and hence cellular functions, of the myosin isoforms may be accounted for, in part, on the basis of detailed differences in interdomain contacts. Moreover, the rigor-like position of switch II turns out to be unique for myosin V. The overall arrangements of subdomains in the motor are relatively conserved in each of the known contractile states, and we explore qualitatively the energetics of these states.  (+info)

Fluorescence lifetime of actin in the familial hypertrophic cardiomyopathy transgenic heart. (4/16)

 (+info)

Effect of paratropomyosin on the increase in sarcomere length of rigor-shortened skeletal muscles. (5/16)

Paratropomyosin is a myofibrillar protein believed to weaken rigor linkages formed between actin and myosin. Using glycerinated fibers of rabbit psoas muscles, we studied the effect of paratropomyosin on the weakening of rigor linkages, which was followed in terms of the increase in sarcomere length of rigor-shortened muscles. The rigor tension developed was reduced to about 65% of the initial value within 10 min after the addition of purified paratropomyosin, whereas it remained constant for at least 3.5 h in control fibers. Paratropomyosin showed a stronger effect on the increase in sarcomere length of passively stretched fibers, which developed weaker rigor-tensions. The purpose of our research was to establish a rigor solution which would best permit the observation of the workings of paratropomyosin. The most successful rigor solution contained 0.2-0.25 M KCl, pH 5.5, at 5-10 degrees C. Under these conditions, the sarcomere length was easily increased from 2.4 to 3.6 micron, if rigor-contracted fibers were passively stretched after the addition of purified paratropomyosin. Because the experimental conditions coincide well with those of postmortem muscles, it is very probable that paratropomyosin plays an important role in restoration of the sarcomere length of rigor-shortened muscles, resulting in tenderization of meat during postrigor ageing.  (+info)

Uncoupling activity of the anthelmintic oxyclozanide in rodents. (6/16)

The uncoupling activity of oxyclozanide in warm blooded animals has been studied in whole animals, isolated tissue in vitro and on mitochondrial preparations. The onset of post mortem rigidity in mice and rats is accelerated and a contracture of striated muscle is produced. Oxyclozanide (1 muM) stimulated rat liver mitochondrial respiration and stimulated an ATP-ase activity.  (+info)

Histopathology of early myocardial infarcts. A new approach. (7/16)

The histopathology of human myocardial infarcts is reviewed in a series of 46 cases ranging from sudden death to a clinical age of 3 days. A set of histopathologic features is described whereby the diagnosis of acute myocardial infarction can be made, even in cases of sudden death, on routine sections and even after considerable autolysis. This is primarily a stretching and waviness of the myocardial fibers, especially at the border of the infarcted area. Its mechanism is probably twofold: the rythmical pull exerted by the normal myocardium against the infarcted paralyzed area and the outward bulging of this area at every systole. On the basis of human material alone, it may be inferred that this pattern develops very rapidly: surely less than 1 hour and perhaps a few minutes after the local circulation has failed.  (+info)

Caffeine contracture and iodoacetate rigor in frog skeletal muscle. A comparison. (8/16)

Frog sartorius muscle treated with 5.0 mM or greater caffeine exhibits stiffness similar to that obtained from muscle in iodoacetate rigor. The data provide quantitative evidence that suggests that caffeine at irreversible contracture-producing concentrations somehow induces a rigor or rigorlike state in skeletal muscle.  (+info)