The role of capsaicin-sensitive muscle afferents in fatigue-induced modulation of the monosynaptic reflex in the rat. (1/82)

1. The role of group III and IV afferent fibres of the lateral gastrocnemious muscle (LG) in modulating the homonymous monosynaptic reflex was investigated during muscle fatigue in spinalized rats. 2. Muscle fatigue was induced by a series of increasing tetanic electrical stimuli (85 Hz, 600 ms) delivered to the LG muscle nerve. Series consisted of increasing train numbers from 1 to 60. 3. Potentials from the spinal cord LG motor pool and from the ventral root were recorded in response to proprioceptive afferent stimulation and analysed before and during tetanic muscle activations. Both the pre- and postsynaptic waves showed an initial enhancement and, after a '12-train' series, an increasing inhibition. 4. The enhancement of the responses to muscle fatiguing stimulation disappeared after L3-L6 dorsal root section, while a partial reflex inhibition was still present. Conversely, after section of the corresponding ventral root, there was only a reduction in the inhibitory effect. 5. The monosynaptic reflex was also studied in animals in which a large number of group III and IV muscle afferents were eliminated by injecting capsaicin (10 mM) into the LG muscle. As a result of capsaicin treatment, the fatigue-induced inhibition of the pre- and postsynaptic waves disappeared, while the response enhancement remained. 6. We concluded that the monosynaptic reflex inhibition, but not the enhancement, was mediated by those group III and IV muscle afferents that are sensitive to the toxic action of capsaicin. The afferents that are responsible for the response enhancement enter the spinal cord through the dorsal root, while those responsible for the inhibition enter the spinal cord through both the ventral and dorsal roots.  (+info)

The distribution of zinc selenite and expression of metallothionein-III mRNA in the spinal cord and dorsal root ganglia of the rat suggest a role for zinc in sensory transmission. (2/82)

Zinc appears to play a role in synaptic transmission in the hippocampus. We tested the hypothesis that zinc is similarly involved in sensory transmission by determining whether vesicular zinc and metallothionein-III (MT-III), a zinc-binding protein, are localized in rat primary afferent neurons. MT-III mRNA, measured using RT-PCR, and MT-III immunoreactivity, were both present in the spinal cord as well as the thoracic and lumbar dorsal root ganglia (DRG). At a time (24 hr) that allows retrograde transport of zinc selenite to cell bodies, only small-diameter neurons and neurons scattered throughout lamina V of the spinal cord were stained by sodium selenite injected intrathecally. This stain disappeared if a ligature was placed on the dorsal root to block axonal transport, demonstrating that these cells are, in fact, zinc-containing primary afferent neurons. When assessed 1 hr after sodium selenite, stain was distributed throughout the neuropil of the spinal cord, especially in lamina III and the area surrounding the central canal. Even in rhizotomized animals, large- and small-diameter DRG neuronal cell bodies were also stained with either selenite (1 hr) or 6-methoxy 8-para-toluene sulfonamide quinoline (TSQ). Paradoxically, this unique pool of zinc was eliminated in large-diameter DRG neurons after neonatal capsaicin treatment, which had no effect on selenite stain or MT-III mRNA content in small-diameter DRG neurons. In summary, we demonstrate that there is a population of capsaicin-insensitive small-diameter primary afferent neurons that are zinc-containing. In addition, there is a unique pool of capsaicin-sensitive zinc that is associated with large-diameter cell bodies.  (+info)

Dorsal root reflexes and cutaneous neurogenic inflammation after intradermal injection of capsaicin in rats. (3/82)

The role of dorsal root reflexes (DRRs) in acute cutaneous neurogenic inflammation induced by intradermal injection of capsaicin (CAP) was examined in anesthetized rats. Changes in cutaneous blood flow (flare) on the plantar surface of the foot were measured using a laser Doppler flowmeter, and neurogenic edema was examined by measurements of paw thickness. To implicate DRRs in neurogenic inflammation after CAP injection, the ipsilateral sciatic and femoral nerves were sectioned, dorsal rhizotomies were performed at L(3-)-S(1), and antagonists of GABA or excitatory amino acid receptors were administered intrathecally. Intradermal injection of CAP evoked a flare response that was largest at 15-20 mm from the injection site and that spread >30 mm. Acute transection of the sciatic and femoral nerves or dorsal rhizotomies nearly completely abolished the blood flow changes 15-20 mm from the CAP injection site, although there was only a minimal effect on blood flow near the injection site. These procedures also significantly reduced neurogenic edema. Intrathecal bicuculline, 6-cyano-7-nitroquinoxaline-2,3-dione, (CNQX) or D(-)-2-amino-7-phosphonoheptanoic acid (AP7), but not phaclofen, also reduced dramatically the increases in blood flow 15-20 mm from the CAP injection site, but had only a minimal effect on blood flow near the injection site. Neurogenic edema was reduced by the same agents that reduced blood flow. Multiunit DRRs recorded from the central stumps of cut dorsal rootlets in the lumbar spinal cord were enhanced after CAP injection. This enhanced DRR activity could be reduced significantly by posttreatment of the spinal cord with bicuculline, CNQX or AP7, but not phaclofen. It is concluded that peripheral cutaneous inflammation induced by intradermal injection of CAP involves central nervous mechanisms. DRRs play a major role in the development of neurogenic cutaneous inflammation, although a direct action of CAP on peripheral nerve terminals or the generation of axon reflexes also may contribute to changes in the skin near the injection site.  (+info)

Upregulation of a silent sodium channel after peripheral, but not central, nerve injury in DRG neurons. (4/82)

After transection of their axons within the sciatic nerve, DRG neurons become hyperexcitable. Recent studies have demonstrated the emergence of a rapidly repriming tetrodotoxin (TTX)-sensitive sodium current that may account for this hyperexcitability in axotomized small (<27 microm diam) DRG neurons, but its molecular basis has remained unexplained. It has been shown previously that sciatic nerve transection leads to an upregulation of sodium channel III transcripts, which normally are present at very low levels in DRG neurons, in adult rats. We show here that TTX-sensitive currents in small DRG neurons, after transection of their peripheral axonal projections, reprime more rapidly than those in control neurons throughout a voltage range of -140 to -60 mV, a finding that suggests that these currents are produced by a different sodium channel. After transection of the central axonal projections (dorsal rhizotomy) of these small DRG neurons, in contrast, the repriming kinetics of TTX-sensitive sodium currents remain similar to those of control (uninjured) neurons. We also demonstrate, with two distinct antibodies directed against different regions of the type III sodium channel, that small DRG neurons display increased brain type III immunostaining when studied 7-12 days after transection of their peripheral, but not central, projections. Type III sodium channel immunoreactivity is present within somata and neurites of peripherally axotomized, but not centrally axotomized, neurons studied after <24 h in vitro. Peripherally axotomized DRG neurons in situ also exhibit enhanced type III staining compared with control neurons, including an accumulation of type III sodium channels in the distal portion of the ligated and transected sciatic nerve, but these changes are not seen in centrally axotomized neurons. These observations are consistent with a contribution of type III sodium channels to the rapidly repriming sodium currents observed in peripherally axotomized DRG neurons and suggest that type III channels may at least partially account for the hyperexcitibility of these neurons after injury.  (+info)

Cervical dorsal rhizotomy increases brain-derived neurotrophic factor and neurotrophin-3 expression in the ventral spinal cord. (5/82)

Although neurotrophic factors have been implicated in several forms of neuroplasticity, little is known concerning their potential role in spinal plasticity. Cervical dorsal rhizotomy (CDR) enhances serotonin terminal density near (spinal) phrenic motoneurons and serotonin-dependent long-term facilitation of phrenic motor output (Kinkead et al., 1998). We tested the hypothesis that selected neurotrophic factors change in a manner consistent with an involvement in this model of spinal plasticity. Brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), glial cell line-derived neurotrophic factor (GDNF), and transforming growth factor-beta(1) (TGF-beta(1)) concentrations were measured (ELISA) in three regions of interest to respiratory control: (1) ventral cervical spinal segments associated with the phrenic motor nucleus (C3-C6), (2) ventral thoracic spinal segments associated with inspiratory intercostal motor output (T3-T6) and (3) the diaphragm. Tissues were harvested from rats 7 d after bilateral CDR and compared with sham-operated and unoperated control rats. CDR increased BDNF (110%; p = 0.002) and NT-3 (100%; p = 0.002) in the cervical and NT-3 in the thoracic spinal cord (98%; p = 0.009). GDNF and TGF-beta(1) were not altered by CDR in any tissue. Immunohistochemistry localized BDNF and NT-3 to motoneurons and interneurons of the ventral spinal cord. These studies provide novel, suggestive evidence that BDNF and NT-3, possibly through their trophic effects on serotonergic neurons and/or motoneurons, may underlie serotonin-dependent plasticity in (spinal) respiratory motor control after CDR.  (+info)

Progressive transneuronal changes in the brainstem and thalamus after long-term dorsal rhizotomies in adult macaque monkeys. (6/82)

This study deals with a potential brainstem and thalamic substrate for the extensive reorganization of somatosensory cortical maps that occurs after chronic, large-scale loss of peripheral input. Transneuronal atrophy occurred in neurons of the dorsal column (DCN) and ventral posterior lateral thalamic (VPL) nuclei in monkeys subjected to cervical and upper thoracic dorsal rhizotomies for 13-21 years and that had shown extensive representational plasticity in somatosensory cortex and thalamus in other experiments. Volumes of DCN and VPL, number and sizes of neurons, and neuronal packing density were measured by unbiased stereological techniques. When compared with the opposite, unaffected, side, the ipsilateral cuneate nucleus (CN), external cuneate nucleus (ECN), and contralateral VPL showed reductions in volume: 44-51% in CN, 37-48% in ECN, and 32-38% in VPL. In the affected nuclei, neurons were progressively shrunken with increasing survival time, and their packing density increased, but there was relatively little loss of neurons (10-16%). There was evidence for loss of axons of atrophic CN cells in the medial lemniscus and in the thalamus, with accompanying severe disorganization of the parts of the ventral posterior nuclei representing the normally innervated face and the deafferented upper limb. Secondary transneuronal atrophy in VPL, associated with retraction of axons of CN neurons undergoing primary transneuronal atrophy, is likely to be associated with similar withdrawal of axons from the cerebral cortex and should be a powerful influence on reorganization of somatotopic maps in the somatosensory cortex.  (+info)

Dorsal rhizotomy changes the spontaneous neuronal activity of nuclei in the medial thalamus. (7/82)

The aim of this study was to examine the influence of unilateral dorsal root section at the cervicothoracic level of the spinal cord on the spontaneous neuronal activity of medial thalamic nuclei in the rat. Single unit extracellular recordings from thalamic nuclei, nc. parafascicularis and nc. centralis lateralis, were obtained with glass micropipettes. The abnormal bursting activity of these nuclei following deafferentation was registered, although a correlation between the occurrence of this activity and the degree of autotomy behavior was not found. Such bursts were never observed in the studied thalamic nuclei of control rats.  (+info)

Increased spinal monoamine concentrations after chronic thoracic dorsal rhizotomy in goats. (8/82)

In goats, bilateral thoracic dorsal rhizotomy (TDR) causes severe ventilatory failure during exercise, followed by progressive functional recovery. We investigated spinal neurochemical changes associated with TDR and/or functional recovery by measuring spinal concentrations of the monoamines serotonin (5-HT), norepinephrine, and dopamine via HPLC. Changes in 5-HT and calcitonin gene-related peptide were visualized with immunohistochemistry. Goat spinal cords were compared 4-15 mo after TDR from T(2) to T(12) (n = 7) with sham-operated (n = 4) or unoperated controls (n = 4). TDR increased the concentration of cervical 5-HT (C(5)-C(6); 122% change), caudal thoracic norepinephrine (T(7)-T(11); 53% change), and rostral thoracic dopamine (T(3)-T(6); 234% change). TDR increased 5-HT-immunoreactive terminal density (dorsal and ventral horns) and nearly eliminated calcitonin gene-related peptide immunoreactivity in the superficial laminae of the dorsal horn in rostral thoracic segments; both effects became less pronounced in caudal thoracic segments. Thus TDR elevates monoamine concentrations in discrete spinal regions, including possible compensatory changes in descending serotonergic inputs to spinal segments not directly affected by TDR (i.e., cervical) but associated with functionally related motor nuclei (i.e., phrenic nucleus).  (+info)