Myocardial osteopontin expression coincides with the development of heart failure. (1/3882)

To identify genes that are differentially expressed during the transition from compensated hypertrophy to failure, myocardial mRNA from spontaneously hypertensive rats (SHR) with heart failure (SHR-F) was compared with that from age-matched SHR with compensated hypertrophy (SHR-NF) and normotensive Wistar-Kyoto rats (WKY) by differential display reverse transcriptase-polymerase chain reaction. Characterization of a transcript differentially expressed in SHR-F yielded a cDNA with homology to the extracellular matrix protein osteopontin. Northern analysis showed low levels of osteopontin mRNA in left ventricular myocardium from WKY and SHR-NF but a markedly increased (approximately 10-fold) level in SHR-F. In myocardium from WKY and SHR-NF, in situ hybridization showed only scant osteopontin mRNA, primarily in arteriolar cells. In SHR-F, in situ hybridization revealed abundant expression of osteopontin mRNA, primarily in nonmyocytes in the interstitial and perivascular space. Similar findings for osteopontin protein were observed in the midwall region of myocardium from the SHR-F group. Consistent with the findings in SHR, osteopontin mRNA was minimally increased (approximately 1.9-fold) in left ventricular myocardium from nonfailing aortic-banded rats with pressure-overload hypertrophy but was markedly increased (approximately 8-fold) in banded rats with failure. Treatment with captopril starting before or after the onset of failure in the SHR reduced the increase in left ventricular osteopontin mRNA levels. Thus, osteopontin expression is markedly increased in the heart coincident with the development of heart failure. The source of osteopontin in SHR-F is primarily nonmyocytes, and its induction is inhibited by an angiotensin-converting enzyme inhibitor, suggesting a role for angiotensin II. Given the known biological activities of osteopontin, including cell adhesion and regulation of inducible nitric oxide synthase gene expression, these data suggest that it could play a role in the pathophysiology of heart failure.  (+info)

Genetic and gender influences on sensitivity to focal cerebral ischemia in the stroke-prone spontaneously hypertensive rat. (2/3882)

We have investigated genetic transmission of increased sensitivity to focal cerebral ischemia and the influence of gender in the stroke-prone spontaneously hypertensive rat (SHRSP). Halothane-anesthetized, 3- to 5-month-old male and female Wistar-Kyoto rats (WKY), SHRSP, and the first filial generation rats (F1 crosses 1 and 2) underwent distal (2 mm) permanent middle cerebral artery occlusion (MCAO) by electrocoagulation. Infarct volume was measured by using hematoxylin-eosin-stained sections and image analysis 24 hours after ischemia and expressed as a percentage of the volume of the ipsilateral hemisphere. Infarct volume in males and females grouped together were significantly larger in SHRSP, F1 cross 1 (SHRSP father), and F1 cross 2 (WKY father), at 36.6+/-2.3% (mean+/-SEM, P<0.001, n=15), 25.4+/-2.4% (P<0.01, n=14), and 33. 9+/-1.6% (P<0.001, n=18), respectively, compared with WKY (14+/-2%, n=17). Male F1 cross 1 (18.9+/-2.4%, n=6) developed significantly smaller infarcts than male F1 cross 2 (32.8+/-2%, n=8, P<0.005). Females, which underwent ischemia during metestrus, developed larger infarcts than respective males. A group of females in which the cycle was not controlled for developed significantly smaller infarcts than females in metestrus. Thus, the increased sensitivity to MCAO in SHRSP is retained in both F1 cross 1 and cross 2 hybrids, suggesting a dominant or codominant trait; response to cerebral ischemia appears to be affected by gender and stage in the estrous cycle. In addition, the male progenitor of the cross (ie, SHRSP versus WKY) influences stroke sensitivity in male F1 cohorts.  (+info)

Kidney aminopeptidase A and hypertension, part I: spontaneously hypertensive rats. (3/3882)

Tissue and plasma levels of aminopeptidase A (APA), the principal enzyme that hydrolyzes angiotensin II (Ang II) to angiotensin III, were measured in spontaneously hypertensive rats (SHR) and their normotensive control strain at 3 different ages corresponding to prehypertensive (4 weeks), developing (8 weeks), and established (16 weeks) phases of hypertension. Plasma APA activity was significantly but modestly elevated in SHR at all 3 ages compared with normotensive Wistar-Kyoto rats. Likewise, levels of APA in brain, heart, and adrenal gland were generally, but again only moderately, elevated in SHR at all ages. However, a large increase in APA activity was seen within the kidney in which APA levels were elevated 41%, 51%, and 68% in SHR at 4, 8, and 16 weeks of age, respectively. Kidney APA levels were also significantly increased in immunoblots from 8- and 16-week-old SHR. Glomeruli isolated from 16-week-old SHR had 57% higher APA activity and increased immunoreactivity compared with Wistar-Kyoto rats. To determine whether the increase in kidney APA activity in SHR was related to Ang II levels, SHR were treated for 2 weeks with the angiotensin-converting enzyme inhibitor captopril. Captopril treatment reduced blood pressure to normotensive values and resulted in a 25% reduction in kidney APA activity. These results suggest that APA expression in the kidney may be regulated by activity of the renin-angiotensin system. If so, this would further suggest that upregulation of APA during conditions in which Ang II levels were elevated would have a protective effect against Ang II-mediated cardiovascular diseases, whereas a decrease in APA expression or a failure to upregulate would exacerbate such conditions.  (+info)

PST 2238: A new antihypertensive compound that modulates Na,K-ATPase in genetic hypertension. (4/3882)

A genetic alteration in the adducin genes is associated with hypertension and up-regulation of the expression of renal Na, K-ATPase in Milan-hypertensive (MHS) rats, in which increased ouabain-like factor (OLF) levels are also observed. PST 2238, a new antihypertensive compound that antagonizes the pressor effect of ouabain in vivo and normalizes ouabain-dependent up-regulation of the renal Na-K pump, was evaluated for its ability to lower blood pressure and regulate renal Na,K-ATPase activity in MHS genetic hypertension. In this study, we show that PST 2238, given orally at very low doses (1 and 10 microg/kg for 5-6 weeks), reduced the development of hypertension in MHS rats and normalized the increased renal Na,K-ATPase activity and mRNA levels, whereas it did not affect either blood pressure or Na,K-ATPase in Milan-normotensive (MNS) rats. In addition, a similar antihypertensive effect was observed in adult MHS rats after a short-term treatment. In cultured rat renal cells with increased Na-K pump activity at Vmax due to overexpression of the hypertensive variant of adducin, 5 days of incubation with PST 2238 (10(-10-)-10(-9) M) lowered the pump rate to the level of normal wild-type cells, which in turn were not affected by the drug. In conclusion, PST 2238 is a very potent compound that in MHS rats reduces blood pressure and normalizes Na-K pump alterations caused by a genetic alteration of the cytoskeletal adducin. Because adducin gene mutations have been associated with human essential hypertension, it is suggested that PST 2238 may display greater antihypertensive activity in those patients carrying such a genetic alteration.  (+info)

Angiotensin receptor subtype 1 mediates angiotensin II enhancement of isoproterenol-induced cyclic AMP production in preglomerular microvascular smooth muscle cells. (5/3882)

In a previous study, we found that angiotensin (Ang) II enhances beta-adrenoceptor-induced cAMP production in cultured preglomerular microvascular smooth muscle cells (PMVSMCs) obtained from spontaneously hypertensive rats. The purpose of the present investigation was to identify the Ang receptor subtypes that mediate this effect. In our first study, we compared the ability of Ang II, Ang III, Ang (3-8), and Ang (1-7) to increase cAMP production in isoproterenol (1 microM)-treated PMVSMCs. Each peptide was tested at 0.1, 1, 10, 100, and 1000 nM. Both Ang II and Ang III increased intracellular (EC50s, 1 and 11 nM, respectively) and extracellular (EC50s, 2 and 14 nM, respectively) cAMP levels in a concentration-dependent fashion. In contrast, Ang (3-8) and Ang (1-7) did not enhance either intracellular or extracellular cAMP levels at any concentration tested. In our second study, we examined the ability of L 158809 [a selective Ang receptor subtype 1 (AT1) receptor antagonist] to inhibit Ang II (100 nM) and Ang III (100 nM) enhancement of isoproterenol (1 microM)-induced cAMP production in PMVSMCs. L 158809 (10 nM) abolished or nearly abolished (p <.001) Ang II and Ang III enhancement of isoproterenol-induced intracellular and extracellular cAMP levels. In contrast, PD 123319 (300 nM; a selective AT2 receptor antagonist) did not significantly alter Ang II enhancement of isoproterenol-induced intracellular or extracellular cAMP levels. We conclude that AT1 receptors, but not AT2, Ang (3-8), nor Ang (1-7) receptors mediate Ang II and Ang III enhancement of beta-adrenoceptor-induced cAMP production in cultured PMVSMCs.  (+info)

Role of iNOS in the vasodilator responses induced by L-arginine in the middle cerebral artery from normotensive and hypertensive rats. (6/3882)

1. The substrate of nitric oxide synthase (NOS), L-arginine (L-Arg, 0.01 microM - 1 mM), induced endothelium-independent relaxations in segments of middle cerebral arteries (MCAs) from normotensive Wistar-Kyoto (WKY) and hypertensive rats (SHR) precontracted with prostaglandin F2alpha (PGF2alpha). These relaxations were higher in SHR than WKY arteries. 2. L-N(G)-nitroarginine methyl ester (L-NAME) and 2-amine-5,6-dihydro-6-methyl-4H-1,3-tiazine (AMT), unspecific and inducible NOS (iNOS) inhibitors, respectively, reduced those relaxations, specially in SHR. 3. Four- and seven-hours incubation with dexamethasone reduced the relaxations in MCAs from WKY and SHR, respectively. 4. Polymyxin B and calphostin C, protein kinase C (PKC) inhibitors, reduced the L-Arg-induced relaxation. 5. Lipopolysaccharide (LPS, 7 h incubation) unaltered and inhibited these relaxations in WKY and SHR segments, respectively. LPS antagonized the effect polymyxin B in WKY and potentiated L-Arg-induced relaxations in SHR in the presence of polymyxin B. 6. The contraction induced by PGF2alpha was greater in SHR than WKY arteries. This contraction was potentiated by dexamethasone and polymyxin B although the effect of polymyxin B was higher in SHR segments. LPS reduced that contraction and antagonized dexamethasone- and polymyxin B-induced potentiation, these effects being greater in arteries from SHR. 7. These results suggest that in MCAs: (1) the induction of iNOS participates in the L-Arg relaxation and modulates the contraction to PGF2alpha; (2) that induction is partially mediated by a PKC-dependent mechanism; and (3) the involvement of iNOS in such responses is greater in the hypertensive strain.  (+info)

Training in swimming reduces blood pressure and increases muscle glucose transport activity as well as GLUT4 contents in stroke-prone spontaneously hypertensive rats. (7/3882)

Exercise improves muscle insulin sensitivity and GLUT4 contents. We investigated the beneficial effects of swimming training on insulin sensitivity and genetic hypertension using stroke-prone hypertensive rats (SHRSP). We studied the relationship between genetic hypertension and insulin resistance in SHRSP and Wistar Kyoto rats (WKY) as a control. The systolic blood pressure of SHRSP was significantly reduced by 4-week swimming training (208.4 +/- 6.8 mmHg vs. 187.2 +/- 4.1 mmHg, p < 0.05). The swimming training also resulted in an approximately 20% increase in the insulin-stimulated glucose transport activity (p < 0.05) of soleus muscle strips and an approximately 3-fold increase in the plasma membrane GLUT4 protein expression (p < 0.01) in SHRSP. However, basal and insulin-stimulated glucose transport activity and GLUT4 contents were not significantly different between WKY and SHRSP. There was no difference in insulin resistance in skeletal muscle of SHRSP as compared with WKY. Our results indicated swimming training exercise improved not only hypertension but also muscle insulin sensitivity and GLUT4 protein expression in SHRSP.  (+info)

Maintenance of normal agonist-induced endothelium-dependent relaxation in uraemic and hypertensive resistance vessels. (8/3882)

BACKGROUND: The nitric oxide system has been implicated in several diseases with vascular complications including diabetes mellitus and hypertension. Despite the high prevalence of hypertension and cardiovascular complications in renal failure few studies have examined vascular and endothelial function in uraemia. We therefore chose to study possible abnormalities of the nitric oxide vasodilator system in an animal model of chronic renal failure. METHODS: Adult spontaneous hypertensive rats and Wistar Kyoto rats were subjected to a 5/6 nephrectomy with control animals having sham operations. After 4 weeks blood pressure was recorded and the animals were sacrificed. Branches of the mesenteric arteries were isolated and mounted on a Mulvany myograph. All experiments were performed in the presence of indomethacin (10(-5) M). The vessels were first preconstricted with noradrenaline, exposed to increasing concentrations of acetylcholine (10(-8) to 10(-4) M) and subsequently to sodium nitroprusside (10(-5) M). RESULTS: There was no difference in the relaxation of the four groups of vessels to any of the concentrations of acetylcholine used nor was there any significant difference in the EC50s (control Wistar Kyoto 6.1+/-1.4 x 10(-8) M; uraemic Wistar Kyoto 5.4+/-0.8 x 10(-8) M; control spontaneous hypertensive rats 4.5+/-0.6 x 10(-8) M; uraemic spontaneous hypertensive rats 6+/-0.7 x 10(-8) M). Vasodilatation in response to sodium nitroprusside was unchanged in uraemic vessels. In addition the vascular responses to both acetylcholine and sodium nitroprusside were unaltered in spontaneous hypertensive rats. CONCLUSIONS: We conclude that normal agonist-induced endothelium-dependent relaxation is maintained in experimental uraemia and hypertension.  (+info)