A novel 53-kDa nodulin of the symbiosome membrane of soybean nodules, controlled by Bradyrhizobium japonicum. (17/17430)

A nodule-specific 53-kDa protein (GmNOD53b) of the symbiosome membrane from soybean was isolated and its LysC digestion products were microsequenced. cDNA clones of this novel nodulin, obtained from cDNA library screening with an RT-PCR (reverse-transcriptase polymerase chain reaction)-generated hybridization probe exhibited no homology to proteins identified so far. The expression of GmNOD53b coincides with the onset of nitrogen fixation. Therefore, it is a late nodulin. Among other changes, the GmNOD53b is significantly reduced in nodules infected with the Bradyrhizobium japonicum mutant 184 on the protein level as well as on the level of mRNA expression, compared with the wild-type infected nodules. The reduction of GmNOD53b mRNA is related to an inactivation of the sipF gene in B. japonicum 184, coding for a functionally active signal peptidase.  (+info)

The nolL gene from Rhizobium etli determines nodulation efficiency by mediating the acetylation of the fucosyl residue in the nodulation factor. (18/17430)

The nodulation factors (Nod factors) of Rhizobium etli and R. loti carry a 4-O-acetyl-L-fucosyl group at the reducing end. It has been claimed, based on sequence analysis, that NolL from R. loti participates in the 4-O-acetylation of the fucosyl residue of the Nod factors, as an acetyl-transferase (D. B. Scott, C. A. Young, J. M. Collins-Emerson, E. A. Terzaghi, E. S. Rockman, P. A. Lewis, and C. E. Pankhurst. Mol. Plant-Microbe Interact. 9:187-197, 1996). Further support for this hypothesis was obtained by studying the production of Nod factors in an R. etli nolL::Km mutant. Chromatographic and mass spectrometry analysis of the Nod factors produced by this strain showed that they lack the acetyl-fucosyl substituent, having a fucosyl group instead. Acetyl-fucosylation was restored upon complementation with a wild-type nolL gene. These results indicate that the nolL gene determines 4-O-acetylation of the fucosyl residue in Nod factors. Analysis of the predicted NolL polypeptide suggests a transmembranal location and that it belongs to the family of integral membrane transacylases (J. M. Slauch, A. A. Lee, M. J. Mahan, and J. J. Mekalanos. J. Bacteriol. 178:5904-5909, 1996). NolL from R. loti was also proposed to function as a transporter; our results show that NolL does not determine a differential secretion of Nod factors from the cell. We also performed plant assays that indicate that acetylation of the fucose conditions efficient nodulation by R. etli of some Phaseolus vulgaris cultivars, as well as of an alternate host (Vigna umbellata).  (+info)

Analysis of protein-protein interactions by mutagenesis: direct versus indirect effects. (19/17430)

Site-directed mutagenesis, including double-mutant cycles, is used routinely for studying protein-protein interactions. We now present a case analysis of chymotrypsin inhibitor 2 (CI2) and subtilisin BPN' using (i) a residue in CI2 that is known to interact directly with subtilisin (Tyr42) and (ii) two CI2 residues that do not have direct contacts with subtilisin (Arg46 and Arg48). We find that there are similar changes in binding energy on mutation of these two sets of residues. It can thus be difficult to interpret mutagenesis data in the absence of structural information.  (+info)

Genetic selection of mutations in the high affinity K+ transporter HKT1 that define functions of a loop site for reduced Na+ permeability and increased Na+ tolerance. (20/17430)

Potassium is an important macronutrient required for plant growth, whereas sodium (Na+) can be toxic at high concentrations. The wheat K+ uptake transporter HKT1 has been shown to function in yeast and oocytes as a high affinity K+-Na+ cotransporter, and as a low affinity Na+ transporter at high external Na+. A previous study showed that point mutations in HKT1, which confer enhancement of Na+ tolerance to yeast, can be isolated by genetic selection. Here we report on the isolation of mutations in new domains of HKT1 showing further large increases in Na+ tolerance. By selection in a Na+ ATPase deletion mutant of yeast that shows a high Na+ sensitivity, new HKT1 mutants at positions Gln-270 and Asn-365 were isolated. Several independent mutations were isolated at the Asn-365 site. N365S dramatically increased Na+ tolerance in yeast compared with all other HKT1 mutants. Cation uptake experiments in yeast and biophysical characterization in Xenopus oocytes showed that the mechanisms underlying the Na+ tolerance conferred by the N365S mutant were: reduced inhibition of high affinity Rb+ (K+) uptake at high Na+ concentrations, reduced low affinity Na+ uptake, and reduced Na+ to K+ content ratios in yeast. In addition, the N365S mutant could be clearly distinguished from less Na+-tolerant HKT1 mutants by a markedly decreased relative permeability for Na+ at high Na+ concentrations. The new mutations contribute to the identification of new functional domains and an amino acid in a loop domain that is involved in cation specificity of a plant high affinity K+ transporter and will be valuable for molecular analyses of Na+ transport mechanisms and stress in plants.  (+info)

Photosystem I, an improved model of the stromal subunits PsaC, PsaD, and PsaE. (21/17430)

An improved electron density map of photosystem I (PSI) calculated at 4-A resolution yields a more detailed structural model of the stromal subunits PsaC, PsaD, and PsaE than previously reported. The NMR structure of the subunit PsaE of PSI from Synechococcus sp. PCC7002 (Falzone, C. J., Kao, Y.-H., Zhao, J., Bryant, D. A., and Lecomte, J. T. J. (1994) Biochemistry 33, 6052-6062) has been used as a model to interpret the region of the electron density map corresponding to this subunit. The spatial orientation with respect to other subunits is described as well as the possible interactions between the stromal subunits. A first model of PsaD consisting of a four-stranded beta-sheet and an alpha-helix is suggested, indicating that this subunit partly shields PsaC from the stromal side. In addition to the improvements on the stromal subunits, the structural model of the membrane-integral region of PSI is also extended. The current electron density map allows the identification of the N and C termini of the subunits PsaA and PsaB. The 11-transmembrane alpha-helices of these subunits can now be assigned uniquely to the hydrophobic segments identified by hydrophobicity analyses.  (+info)

Characterization of Chlamydomonas reinhardtii zygote-specific cDNAs that encode novel proteins containing ankyrin repeats and WW domains. (22/17430)

Genes that are expressed only in the young zygote are considered to be of great importance in the development of an isogamous green alga, Chlamydomonas reinhardtii. Clones representing the Zys3 gene were isolated from a cDNA library prepared using zygotes at 10 min after fertilization. Sequencing of Zys3 cDNA clones resulted in the isolation of two related molecular species. One of them encoded a protein that contained two kinds of protein-to-protein interaction motifs known as ankyrin repeats and WW domains. The other clone lacked the ankyrin repeats but was otherwise identical. These mRNA species began to accumulate simultaneously in cells beginning 10 min after fertilization, and reached maximum levels at about 4 h, after which time levels decreased markedly. Genomic DNA gel-blot analysis indicated that Zys3 was a single-copy gene. The Zys3 proteins exhibited parallel expression to the Zys3 mRNAs at first, appearing 2 h after mating, and reached maximum levels at more than 6 h, but persisted to at least 1 d. Immunocytochemical analysis revealed their localization in the endoplasmic reticulum, which suggests a role in the morphological changes of the endoplasmic reticulum or in the synthesis and transport of proteins to the Golgi apparatus or related vesicles.  (+info)

The Arabidopsis dwarf1 mutant is defective in the conversion of 24-methylenecholesterol to campesterol in brassinosteroid biosynthesis. (23/17430)

Since the isolation and characterization of dwarf1-1 (dwf1-1) from a T-DNA insertion mutant population, phenotypically similar mutants, including deetiolated2 (det2), constitutive photomorphogenesis and dwarfism (cpd), brassinosteroid insensitive1 (bri1), and dwf4, have been reported to be defective in either the biosynthesis or the perception of brassinosteroids. We present further characterization of dwf1-1 and additional dwf1 alleles. Feeding tests with brassinosteroid-biosynthetic intermediates revealed that dwf1 can be rescued by 22alpha-hydroxycampesterol and downstream intermediates in the brassinosteroid pathway. Analysis of the endogenous levels of brassinosteroid intermediates showed that 24-methylenecholesterol in dwf1 accumulates to 12 times the level of the wild type, whereas the level of campesterol is greatly diminished, indicating that the defective step is in C-24 reduction. Furthermore, the deduced amino acid sequence of DWF1 shows significant similarity to a flavin adenine dinucleotide-binding domain conserved in various oxidoreductases, suggesting an enzymatic role for DWF1. In support of this, 7 of 10 dwf1 mutations directly affected the flavin adenine dinucleotide-binding domain. Our molecular characterization of dwf1 alleles, together with our biochemical data, suggest that the biosynthetic defect in dwf1 results in reduced synthesis of bioactive brassinosteroids, causing dwarfism.  (+info)

GTPase activity and biochemical characterization of a recombinant cotton fiber annexin. (24/17430)

A cDNA encoding annexin was isolated from a cotton (Gossypium hirsutum) fiber cDNA library. The cDNA was expressed in Escherichia coli, and the resultant recombinant protein was purified. We then investigated some biochemical properties of the recombinant annexin based on the current understanding of plant annexins. An "add-back experiment" was performed to study the effect of the recombinant annexin on beta-glucan synthase activity, but no effect was found. However, it was found that the recombinant annexin could display ATPase/GTPase activities. The recombinant annexin showed much higher GTPase than ATPase activity. Mg2+ was essential for these activities, whereas a high concentration of Ca2+ was inhibitory. A photolabeling assay showed that this annexin could bind GTP more specifically than ATP. The GTP-binding site on the annexin was mapped into the carboxyl-terminal fourth repeat of annexin from the photolabeling experiment using domain-deletion mutants of this annexin. Northern-blot analysis showed that the annexin gene was highly expressed in the elongation stages of cotton fiber differentiation, suggesting a role of this annexin in cell elongation.  (+info)