The homeobox gene Pitx2: mediator of asymmetric left-right signaling in vertebrate heart and gut looping. (1/14921)

Left-right asymmetry in vertebrates is controlled by activities emanating from the left lateral plate. How these signals get transmitted to the forming organs is not known. A candidate mediator in mouse, frog and zebrafish embryos is the homeobox gene Pitx2. It is asymmetrically expressed in the left lateral plate mesoderm, tubular heart and early gut tube. Localized Pitx2 expression continues when these organs undergo asymmetric looping morphogenesis. Ectopic expression of Xnr1 in the right lateral plate induces Pitx2 transcription in Xenopus. Misexpression of Pitx2 affects situs and morphology of organs. These experiments suggest a role for Pitx2 in promoting looping of the linear heart and gut.  (+info)

Endocytosis: EH domains lend a hand. (2/14921)

A number of proteins that have been implicated in endocytosis feature a conserved protein-interaction module known as an EH domain. The three-dimensional structure of an EH domain has recently been solved, and is likely to presage significant advances in understanding molecular mechanisms of endocytosis.  (+info)

Sonic hedgehog signaling by the patched-smoothened receptor complex. (3/14921)

BACKGROUND: The Hedgehog (Hh) family of secreted proteins is involved in a number of developmental processes as well as in cancer. Genetic and biochemical data suggest that the Sonic hedgehog (Shh) receptor is composed of at least two proteins: the tumor suppressor protein Patched (Ptc) and the seven-transmembrane protein Smoothened (Smo). RESULTS: Using a biochemical assay for activation of the transcription factor Gli, a downstream component of the Hh pathway, we show here that Smo functions as the signaling component of the Shh receptor, and that this activity can be blocked by Ptc. The inhibition of Smo by Ptc can be relieved by the addition of Shh. Furthermore, oncogenic forms of Smo are insensitive to Ptc repression in this assay. Mapping of the Smo domains required for binding to Ptc and for signaling revealed that the Smo-Ptc interaction involves mainly the amino terminus of Smo, and that the third intracellular loop and the seventh transmembrane domain are required for signaling. CONCLUSIONS: These data demonstrate that Smo is the signaling component of a multicomponent Hh receptor complex and that Ptc is a ligand-regulated inhibitor of Smo. Different domains of Smo are involved in Ptc binding and activation of a Gli reporter construct. The latter requires the third intracellular loop and the seventh transmembrane domain of Smo, regions often involved in coupling to G proteins. No changes in the levels of cyclic AMP or calcium associated with such pathways could be detected following receptor activation, however.  (+info)

A Drosophila TNF-receptor-associated factor (TRAF) binds the ste20 kinase Misshapen and activates Jun kinase. (4/14921)

Two families of protein kinases that are closely related to Ste20 in their kinase domain have been identified - the p21-activated protein kinase (Pak) and SPS1 families [1-3]. In contrast to Pak family members, SPS1 family members do not bind and are not activated by GTP-bound p21Rac and Cdc42. We recently placed a member of the SPS1 family, called Misshapen (Msn), genetically upstream of the c-Jun amino-terminal (JNK) mitogen-activated protein (MAP) kinase module in Drosophila [4]. The failure to activate JNK in Drosophila leads to embryonic lethality due to the failure of these embryos to stimulate dorsal closure [5-8]. Msn probably functions as a MAP kinase kinase kinase kinase in Drosophila, activating the JNK pathway via an, as yet, undefined MAP kinase kinase kinase. We have identified a Drosophila TNF-receptor-associated factor, DTRAF1, by screening for Msn-interacting proteins using the yeast two-hybrid system. In contrast to the mammalian TRAFs that have been shown to activate JNK, DTRAF1 lacks an amino-terminal 'Ring-finger' domain, and overexpression of a truncated DTRAF1, consisting of only its TRAF domain, activates JNK. We also identified another DTRAF, DTRAF2, that contains an amino-terminal Ring-finger domain. Msn specifically binds the TRAF domain of DTRAF1 but not that of DTRAF2. In Drosophila, DTRAF1 is thus a good candidate for an upstream molecule that regulates the JNK pathway by interacting with, and activating, Msn. Consistent with this idea, expression of a dominant-negative Msn mutant protein blocks the activation of JNK by DTRAF1. Furthermore, coexpression of Msn with DTRAF1 leads to the synergistic activation of JNK. We have extended some of these observations to the mammalian homolog of Msn, Nck-interacting kinase (NIK), suggesting that TRAFs also play a critical role in regulating Ste20 kinases in mammals.  (+info)

Transformation mediated by RhoA requires activity of ROCK kinases. (5/14921)

BACKGROUND: The Ras-related GTPase RhoA controls signalling processes required for cytoskeletal reorganisation, transcriptional regulation, and transformation. The ability of RhoA mutants to transform cells correlates not with transcription but with their ability to bind ROCK-I, an effector kinase involved in cytoskeletal reorganisation. We used a recently developed specific ROCK inhibitor, Y-27632, and ROCK truncation mutants to investigate the role of ROCK kinases in transcriptional activation and transformation. RESULTS: In NIH3T3 cells, Y-27632 did not prevent the activation of serum response factor, transcription of c-fos or cell cycle re-entry following serum stimulation. Repeated treatment of NIH3T3 cells with Y-27632, however, substantially disrupted their actin fibre network but did not affect their growth rate. Y-27632 blocked focus formation by RhoA and its guanine-nucleotide exchange factors Dbl and mNET1. It did not affect the growth rate of cells transformed by Dbl and mNET1, but restored normal growth control at confluence and prevented their growth in soft agar. Y-27632 also significantly inhibited focus formation by Ras, but had no effect on the establishment or maintenance of transformation by Src. Furthermore, it significantly inhibited anchorage-independent growth of two out of four colorectal tumour cell lines. Consistent with these data, a truncated ROCK derivative exhibited weak ability to cooperate with activated Raf in focus formation assays. CONCLUSIONS: ROCK signalling is required for both the establishment and maintenance of transformation by constitutive activation of RhoA, and contributes to the Ras-transformed phenotype. These observations provide a potential explanation for the requirement for Rho in Ras-mediated transformation. Moreover, the inhibition of ROCK kinases may be of therapeutic use.  (+info)

Decreased expression of the pro-apoptotic protein Par-4 in renal cell carcinoma. (6/14921)

Par-4 is a widely expressed leucine zipper protein that confers sensitization to apoptosis induced by exogenous insults. Because the expression of genes that promote apoptosis may be down-regulated during tumorigenesis, we sought to examine the expression of Par-4 in human tumors. We present here evidence that Par-4 protein levels were severely decreased in human renal cell carcinoma specimens relative to normal tubular cells. Replenishment of Par-4 protein levels in renal cell carcinoma cell lines conferred sensitivity to apoptosis. Because apoptosis may serve as a defense mechanism against malignant transformation or progression, decreased expression of Par-4 may contribute to the pathophysiology of renal cell carcinoma.  (+info)

Activation of Src in human breast tumor cell lines: elevated levels of phosphotyrosine phosphatase activity that preferentially recognizes the Src carboxy terminal negative regulatory tyrosine 530. (7/14921)

Elevated levels of Src kinase activity have been reported in a number of human cancers, including colon and breast cancer. We have analysed four human breast tumor cell lines that exhibit high levels of Src kinase activity, and have determined that these cell lines also exhibit a high level of a phosphotyrosine phosphatase activity that recognizes the Src carboxy-terminal P-Tyr530 negative regulatory site. Total Src kinase activity in these cell lines is elevated as much as 30-fold over activity in normal control cells and specific activity is elevated as much as 5.6-fold. When the breast tumor cells were grown in the presence of the tyrosine phosphatase inhibitor vanadate, Src kinase activity was reduced in all four breast tumor cell lines, suggesting that Src was being activated by a phosphatase which could recognize the Tyr530 negative regulatory site. In fractionated cell extracts from the breast tumor cells, we found elevated levels of a membrane associated tyrosine phosphatase activity that preferentially dephosphorylated a Src family carboxy-terminal phosphopeptide containing the regulatory tyrosine 530 site. Src was hypophosphorylated in vivo at tyrosine 530 in at least two of the tumor cell lines, further suggesting that Src was being activated by a phosphatase in these cells. In preliminary immunoprecipitation and antibody depletion experiments, we were unable to correlate the major portion of this phosphatase activity with several known phosphatases.  (+info)

Gadd45, a p53-responsive stress protein, modifies DNA accessibility on damaged chromatin. (8/14921)

This report demonstrates that Gadd45, a p53-responsive stress protein, can facilitate topoisomerase relaxing and cleavage activity in the presence of core histones. A correlation between reduced expression of Gadd45 and increased resistance to topoisomerase I and topoisomerase II inhibitors in a variety of human cell lines was also found. Gadd45 could potentially mediate this effect by destabilizing histone-DNA interactions since it was found to interact directly with the four core histones. To evaluate this possibility, we investigated the effect of Gadd45 on preassembled mononucleosomes. Our data indicate that Gadd45 directly associates with mononucleosomes that have been altered by histone acetylation or UV radiation. This interaction resulted in increased DNase I accessibility on hyperacetylated mononucleosomes and substantial reduction of T4 endonuclease V accessibility to cyclobutane pyrimidine dimers on UV-irradiated mononucleosomes but not on naked DNA. Both histone acetylation and UV radiation are thought to destabilize the nucleosomal structure. Hence, these results imply that Gadd45 can recognize an altered chromatin state and modulate DNA accessibility to cellular proteins.  (+info)