Role of angiogenesis in human tumor dormancy: animal models of the angiogenic switch. (65/368)

Tumor progression depends on sequential events, including a switch to the angiogenic phenotype (i.e., initial recruitment of blood vessels). Failure of a microscopic tumor to complete one or more early steps in this process may lead to delayed clinical manifestation of the cancer. Microscopic human cancers can remain in an asymptomatic, non-detectable, and occult state for the life of a person. Clinical and experimental evidence suggest that human tumors can persist for long periods of time as microscopic lesions that are in a state of dormancy (i.e., not expanding in tumor mass). Because it is well established that tumor growth beyond the size of 1-2 mm is angiogenesis-dependent, we hypothesized that presentation of large tumors is attributed to a switch to the angiogenic phenotype in otherwise microscopic, dormant tumors. Although clinically important, the biology of human tumor dormancy is poorly understood. The development of animal models which recapitulate the clinically observed timing and proportion of dormant tumors which switch to the angiogenic phenotype are reviewed here. The contributing molecular mechanisms involved in the angiogenic switch and different strategies for isolation of both angiogenic and non-angiogenic tumor cell populations from otherwise heterogeneous human tumor cell lines or surgical specimens are also summarized. Several imaging techniques have been utilized for the qualitative and quantitative detection of microscopic tumors in mice and their strengths and limitations are discussed. The animal models employed here permitted further studies of the angiogenic switch. These models also allowed development of an angiogenesis-based panel of blood and urine biomarkers that can be quantified and used to detect microscopic tumors before or during the angiogenic switch. If the information obtained from these animal models is translatable to the clinic, it may be possible in the future to liberate the management of cancer from a dependency on anatomical site years before it becomes symptomatic and detectable.  (+info)

Angiopoietin-2 overexpression in morris hepatoma results in increased tumor perfusion and induction of critical angiogenesis-promoting genes. (66/368)

Monitoring of angiogenesis-relevant approaches with functional imaging and histomorphometric analyses is desirable to evaluate the biologic effects. In this study we wished to examine the complex effects of angiopoietin-2 (Ang-2) gene transfer in a rat hepatoma model. METHODS: Using a bicistronic retroviral vector for Ang-2, Morris hepatoma (MH3924A) cell lines with Ang-2 expression were generated (Ang-2-MH3924A). In human umbilical vein endothelial cells (HUVECs) cocultured with Ang-2-MH3924A, the proliferative action with or without growth factors were determined. Furthermore, animal experiments were performed to measure effects on tumor growth and perfusion. Finally, tumors were examined by immunohistochemistry and DNA chip analysis. RESULTS: Ang-2-expressing MH3924A enhanced basic fibroblast growth factor-mediated endothelial cell proliferation. Perfusion, as measured by H(2)(15)O PET, was increased in genetically modified tumors. Consistent with the increased perfusion, micro- and macrovascularization were increased. However, tumor growth was similar to wild-type MH3924A (WT-MH3924A). Proliferating cell nuclear antigen and TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling) staining revealed an increased number of positive cells, indicating a compensation of increased proliferation by enhanced apoptosis. DNA chip analysis showed an induction of angiogenesis-promoting genes, including crucial vascular growth factor receptors, as well as genes related to extracellular matrix (ECM), apoptosis, signal transduction, and oxidative stress. CONCLUSION: Our results suggest that Ang-2 expression increases perfusion or vascularization, especially in interaction with the vascular growth factor system, without affecting tumor growth. Simultaneous, enhanced expression of genes for ECM, apoptosis, and signal transduction indicates Ang-2's versatile role in angiogenesis including its destabilizing function on ECM and endothelium.  (+info)

Decidual stromal cell response to paracrine signals from the trophoblast: amplification of immune and angiogenic modulators. (67/368)

During the invasive phase of implantation, trophoblasts and maternal decidual stromal cells secrete products that regulate trophoblast differentiation and migration into the maternal endometrium. Paracrine interactions between the extravillous trophoblast and the maternal decidua are important for successful embryonic implantation, including establishing the placental vasculature, anchoring the placenta to the uterine wall, and promoting the immunoacceptance of the fetal allograph. To our knowledge, global crosstalk between the trophoblast and the decidua has not been elucidated to date, and the present study used a functional genomics approach to investigate these paracrine interactions. Human endometrial stromal cells were decidualized with progesterone and further treated with conditioned media from human trophoblasts (TCM) or, as a control, with control conditioned media (CCM) from nondecidualized stromal cells for 0, 3, and 12 h. Total RNA was isolated and processed for analysis on whole-genome, high-density oligonucleotide arrays containing 54,600 genes. We found that 1374 genes were significantly upregulated and that 3443 genes were significantly downregulated after 12 h of coincubation of stromal cells with TCM, compared to CCM. Among the most upregulated genes were the chemokines CXCL1 (GRO1) and IL8,CXCR4, and other genes involved in the immune response (CCL8 [SCYA8], pentraxin 3 (PTX3), IL6, and interferon-regulated and -related genes) as well as TNFAIP6 (tumor necrosis factor alpha-induced protein 6) and metalloproteinases (MMP1, MMP10, and MMP14). Among the downregulated genes were growth factors, e.g., IGF1, FGF1, TGFB1, and angiopoietin-1, and genes involved in Wnt signaling (WNT4 and FZD). Real-time RT-PCR and ELISAs, as well as immunohistochemical analysis of human placental bed specimens, confirmed these data for representative genes of both up- and downregulated groups. The data demonstrate a significant induction of proinflammatory cytokines and chemokines, as well as angiogenic/static factors in decidualized endometrial stromal cells in response to trophoblast-secreted products. The data suggest that the trophoblast acts to alter the local immune environment of the decidua to facilitate the process of implantation and ensure an enriched cytokine/chemokine environment while limiting the mitotic activity of the stromal cells during the invasive phase of implantation.  (+info)

Quilty effect has the features of lymphoid neogenesis and shares CXCL13-CXCR5 pathway with recurrent acute cardiac rejections. (68/368)

Quilty effect (QE) is a frequent, yet enigmatic feature of cardiac allograft, since it is apparently devoid of clinical significance, though its association with acute (A) rejection (R) is strongly suspected. It was observed in 126/379 biopsies from 22 patients during the first posttransplant year. Most grade (G)2R biopsies displayed a concomitant QE. The following features typical of QE were identified: (a) focal angiogenesis and lymphangiogenesis associated with bFGF, VEGF-C and VEGF-A expression, (b) marked infiltrate of CD4(+)T and CD20(+)B followed by CD8(+)T lymphocytes arranged around PNAd(+)HEV-like vessels. Most QE appear as distinct B-T-cell-specific areas with lymphoid follicles sometimes endowed with germinal center-like structures containing VCAM-1(+)CD21(+)FDC and CD68(+)macrophages, which frequently expressed CXCL13. These cells were also found in mantle-like zones, where small lymphocytes expressed CXCR5, otherwise in the whole area of not clustered lymphoid aggregates. CXCL13 was also expressed, in association with CD20(+)B lymphocyte recruitment, in G2R biopsies obtained from patients with recurrent AR. QE has features of a tertiary lymphoid tissue suggesting an attempt, by the heart allograft, to mount a local response to a persistent alloantigen stimulation resulting in aberrant CXCL13 production, as also occurs in recurrent AR. CXCL13-CXCR5 emerge as a common molecular pathway for QE and recurrent episodes of AR.  (+info)

Diversity of the angiogenic phenotype in non-small cell lung cancer. (69/368)

Angiogenesis is crucial for tumor biology. There are many mechanisms by which tumors induce angiogenesis. We hypothesize that each individual tumor develops a unique mechanism to induce angiogenesis, and that activation of a particular angiogenic pathway suppresses the evolution of alternative pathways. We characterized 168 human non-small cell lung cancer (NSCLC) specimens for levels of angiogenic factors (angiogenic CXC chemokines, basic fibroblast growth factor, and vascular endothelial growth factor). We also induced lung tumor formation in A/J mice by injecting the tobacco carcinogen NNK. We dissected individual lung tumors and measured expression of angiogenic factors from three distinct families using real-time PCR. Finally, we controlled the angiogenic milieu using in vivo models to determine the resultant phenotype of the angiogenic factors expressed by NSCLC cells. Human tumors displayed marked variation in the expression of angiogenic factors. Individual mouse tumors, even from within the same mouse, displayed variability in their pattern of expression of angiogenic factors. In a sponge model of angiogenesis using murine lung cancer cells, implanting LLC cells with an angiogenic factor suppressed the expression of other angiogenic factors in implanted sponges. This suppressive effect was not seen in vitro. We conclude that lung cancer tumors evolve a unique and dominant angiogenic phenotype. Once an angiogenic pathway is activated, it may allow for tumor growth to proceed in the absence of a selection pressure to activate a second pathway.  (+info)

Angiogenic factors stimulate tubular branching morphogenesis of sonic hedgehog-deficient lungs. (70/368)

Sonic Hedgehog (Shh)-deficient mice have a severe lung branching defect. Recent studies have shown that hedgehog signaling is involved in vascular development and it is possible that the diminished airway branching in Shh-deficient mice is due to abnormal pulmonary vasculature formation. Therefore, we investigated the role of Shh in pulmonary vascular development using Shh/Tie2lacZ compound mice, which exhibit endothelial cell-specific LacZ expression, and Pecam-1 immunohistochemistry. In E11.5-13.5 Shh-deficient mice, the pulmonary vascular bed is decreased, but appropriate to the decrease in airway branching. However, when E12.5 Shh-deficient lungs were cultured for 4-6 days, the vascular network deteriorated compared to wild-type lungs. The expression of vascular endothelial growth factor (Vegf) or its receptor Vegfr2 (KDR/Flk-1) was not different between E12.5-13.5 Shh-deficient and wild-type lungs. In contrast, angiopoietin-1 (Ang1), but not Ang2 or the angiopoietin receptor Tie2, mRNA expression was downregulated in E12.5-E13.5 lungs of Shh null mutants. Recombinant Ang1 alone was unable to restore in vitro branching morphogenesis in Shh-deficient lungs. Conversely, the angiogenic factor fibroblast growth factor (Fgf)-2 alone or in combination with Ang1, increased vascularization and tubular growth and branching of Shh-deficient lungs in vitro. The angiogenic factors did not overcome the reduced smooth muscle cell differentiation in the Shh null lungs. These data indicate that early vascular development, mediated by Vegf/Vegfr2 signaling proceeds normally in Shh-deficient mice, while later vascular development and stabilization of the primitive network mediated by the Ang/Tie2 signaling pathway are defective, resulting in an abnormal vascular network. Stimulation of vascularization with angiogenic factors such as Fgf2 and Ang1 partially restored tubular growth and branching in Shh-deficient lungs, suggesting that vascularization is required for branching morphogenesis.  (+info)

MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. (71/368)

MicroRNAs (miRNAs) are a class of 20-24 nt non-coding RNAs that regulate gene expression primarily through post-transcriptional repression or mRNA degradation in a sequence-specific manner. The roles of miRNAs are just beginning to be understood, but the study of miRNA function has been limited by poor understanding of the general principles of gene regulation by miRNAs. Here we used CNE cells from a human nasopharyngeal carcinoma cell line as a cellular system to investigate miRNA-directed regulation of VEGF and other angiogenic factors under hypoxia, and to explore the principles of gene regulation by miRNAs. Through computational analysis, 96 miRNAs were predicted as putative regulators of VEGF. But when we analyzed the miRNA expression profile of CNE and four other VEGF-expressing cell lines, we found that only some of these miRNAs could be involved in VEGF regulation, and that VEGF may be regulated by different miRNAs that were differentially chosen from 96 putative regulatory miRNAs of VEGF in different cells. Some of these miRNAs also co-regulate other angiogenic factors (differential regulation and co-regulation principle). We also found that VEGF was regulated by multiple miRNAs using different combinations, including both coordinate and competitive interactions. The coordinate principle states that miRNAs with independent binding sites in a gene can produce coordinate action to increase the repressive effect of miRNAs on this gene. By contrast, the competitive principle states when multiple miRNAs compete with each other for a common binding site, or when a functional miRNA competes with a false positive miRNA for the same binding site, the repressive effects of miRNAs may be decreased. Through the competitive principle, false positive miRNAs, which cannot directly repress gene expression, can sometimes play a role in miRNA-mediated gene regulation. The competitive principle, differential regulation, multi-miRNA binding sites, and false positive miRNAs might be useful strategies in the avoidance of unwanted cross-action among genes targeted by miRNAs with multiple targets.  (+info)

Cerebral angiogenic factors, angiogenesis, and physiological response to chronic hypoxia differ among four commonly used mouse strains. (72/368)

Angiogenesis is a critical element for adaptation to low levels of oxygen and occurs following long-term exposure to mild hypoxia in rats. To test whether a similar response in mice occurs, CD1, 129/Sv, C57Bl/6, and Balb/c mice were exposed to 10% oxygen for up to 3 wk. All mice showed significant increases in the percentage of packed red blood cells, and CD1 and 129/Sv mice showed increased respiration frequency and minute volume, common physiological measures of hypoxia. Significant angiogenesis was observed in all strains except Balb/c following 3-wk exposure to chronic hypoxia. CD1 hypoxic mice had the largest increase (88%), followed by C57Bl/6 (48%), 129/Sv (41%), and Balb/c (12%), suggesting that some mice undergo more remodeling than others in response to hypoxia. Protein expression analysis of vascular endothelial growth factor (VEGF), angiopoietin (Ang)-1 and Ang2, and Tie2 were examined to determine whether regulation of different angiogenic proteins could account for the differences observed in hypoxia-induced angiogenesis. CD1 mice showed the strongest upregulation of VEGF, Ang2, Ang1, and Tie2, whereas Balb/c had only subtle increases in VEGF and no change in the other proteins. C57Bl/6 mice showed a regulatory response that fell between the CD1 and Balb/c mice, consistent with the intermediate increase in angiogenesis. Our results suggest that genetic heterogeneity plays a role in angiogenesis and regulation of angiogenic proteins and needs to be accounted for when designing and interpreting experiments using transgenic mice and when studying in vivo models of angiogenesis.  (+info)