Effect of individual or combined ablation of the nuclear groups of the lamina terminalis on water drinking in sheep. (1/308)

The subfornical organ (SFO), organum vasculosum of the lamina terminalis (OVLT), and median preoptic nucleus (MnPO) were ablated either individually or in various combinations, and the effects on drinking induced by either intravenous infusion of hypertonic 4 M NaCl (1.3 ml/min for 30 min) or water deprivation for 48 h were studied. Ablation of either the OVLT or SFO alone did not affect drinking in response to intravenous 4 M NaCl, although combined ablation of these two circumventricular organs substantially reduced but did not abolish such drinking. Ablation of the MnPO or MnPO and SFO together also substantially reduced, but did not abolish, drinking in response to intravenous hypertonic NaCl. Only near-total destruction of the lamina terminalis (OVLT, MnPO, and part or all of the SFO) abolished acute osmotically induced drinking. The large lesions also reduced drinking after water deprivation, whereas none of the other lesions significantly affected such drinking. None of these lesions altered feeding. The results show that all parts of the lamina terminalis play a role in the drinking induced by acute increases in plasma tonicity. The lamina terminalis appears to play a less crucial role in the drinking response after water deprivation than for the drinking response to acute intravenous infusion of hypertonic saline.  (+info)

A rapid feedback signal is not always necessary for termination of a drinking bout. (2/308)

When a pig is deprived of drinking water, a deficit of body water develops that is corrected when the pig drinks to satiation. If food is available during the deprivation, the stimulus to drinking is plasma hyperosmolality. Because of the delay in correction of plasma hyperosmolality as ingested water is slowly absorbed, it has been thought that a rapid inhibitory signal from the digestive tract is necessary to prevent overdrinking. This concept was tested by measuring changes in plasma osmolality before and during drinking after such deprivation and also after infusion of hypertonic saline. As drinking began, there was a rapid fall of plasma osmolality to levels insufficient to drive drinking by the time drinking ended. This fall of plasma hyperosmolality to subthreshold levels while the pig is drinking seems to make a rapid inhibitory control signal from the digestive tract unnecessary to terminate the drinking bout under these conditions.  (+info)

Thermal dehydration-induced thirst in spontaneously hypertensive rats. (3/308)

Spontaneously hypertensive (SH) rats and normotensive Wistar-Kyoto (WKY) rats were exposed to either 25 or 37.5 degrees C for 3.5 h, and their thermal and water balance responses were compared. After exposure, either a blood sample was obtained or the rats were allowed to rehydrate for 4 h. SH rats had both higher core temperatures and evaporative water losses during heat exposure. Measurements of hematocrit, hemoglobin concentration, plasma protein and sodium concentrations, and plasma osmolality indirectly showed that the SH rats were dehydrated relative to the WKY rats after exposure to either 25 or 37.5 degrees C. SH rats drank significantly more water but also had significantly higher urine volumes than the WKY rats and thus rehydrated only slightly better than the WKY rats. SH and WKY rats had similar levels of water intake and urine output after 24 h of water deprivation. The elevated thermal response of SH rats to heat exposure does not appear to lead to uncompensatable changes in body water status.  (+info)

Osmolality: a physiological long-term regulator of lumbar sympathetic nerve activity and arterial pressure. (4/308)

Acute infusion of hypertonic fluid increases mean arterial pressure (MAP) in part by elevating nonrenal sympathetic activity. However, it is not known whether chronic, physiological increases in osmolality also increase sympathetic activity. To test this hypothesis, MAP, heart rate (HR), and lumbar sympathetic nerve activity (LSNA) were measured in conscious, 48-h water-deprived rats (WD) during a progressive reduction in osmolality produced by a 2-h systemic infusion (0.12 ml/min) of 5% dextrose in water (5DW). Water deprivation significantly increased osmolality (308 +/- 2 vs. 290 +/- 2 mosmol/kgH2O, P < 0.001), HR (453 +/- 7 vs. 421 +/- 10 beats/min, P < 0.05), and LSNA (63.5 +/- 1.8 vs. 51.9 +/- 3.8% baroreflex maximum, P < 0.01). Two hours of 5DW infusion reduced osmolality (-15 +/- 5 mosmol/kgH2O), LSNA (-23 +/- 3% baseline), and MAP (-10 +/- 1 mmHg). To evaluate the role of vasopressin in these changes, rats were pretreated with a V1-vasopressin receptor antagonist. The antagonist lowered MAP (-5 +/- 1 mmHg) and elevated HR (32 +/- 7 beats/min) and LSNA (11 +/- 3% baseline) in WD (P < 0. 05), but not in water-replete, rats. 5DW infusion had a similar cumulative effect on all variables in V1-blocked WD rats, but had no effect in water-replete rats. Infusion of the same volume of normal saline in WD rats did not change osmolality, LSNA or MAP. Together these data indicate that, in dehydrated rats, vasopressin supports MAP and suppresses LSNA and HR and that physiological changes in osmolality directly influence sympathetic activity and blood pressure independently of changes in vasopressin and blood volume.  (+info)

Effect of dorsomedial hypothalamic nuclei knife cuts on ingestive behavior. (5/308)

Previous findings show that rats with electrolytic or excitotoxic lesions in the dorsomedial hypothalamic nucleus (DMN) are hypophagic and hypodipsic and have reduced ponderal and linear growth but normal body composition. DMN-lesioned (DMNL) rats also show altered ingestive responses to naloxone. The present study investigated the intrahypothalamic nerve pathways involved in these DMNL effects and the response of the pathways to deprivation challenges by placing knife cuts posterior (Post), lateral (Lat), ventral (Vent), dorsal, or anterior to the DMN or by administering sham operations. One major finding was that rats with Post or Vent were hypophagic (P < 0. 05) and had reduced body weight but responded normally to deprivation challenges. Post and Lat groups were hypodipsic (P < 0. 05), but plasma Na+, K+, and osmolality and 24-h post-water-deprivation drinking responses were similar in all groups. Naloxone did not suppress the intake of Post rats. It appears that the hypophagia and the reduced body weight after DMNL involve fibers entering or leaving the DMN from ventral and posterior directions, and they may be part of an opioid feeding system.  (+info)

An enhanced effect of arginine vasopressin in bradykinin B2 receptor null mutant mice. (6/308)

Under water restriction, arginine vasopressin (AVP) is released and promotes water reabsorption in the distal nephron, mainly through AVP V2-receptors. It has been proposed that renal kinins counteract the hydro-osmotic effect of AVP. We hypothesized that kinins acting through B2 receptors antagonize the urinary concentrating effect of AVP. To test this, bradykinin B2 receptor knockout mice (B2-KO) and 129/SvEv mice (controls) were placed in metabolic cages and urine collected for 24 hours (water ad libitum). After that, urine was again collected from the same mice during 24 hours of water restriction. Urinary volume (UV), urinary osmolarity (UOsm), and urinary Na+ (UNaV) and K+ (UKV) excretion were determined. On water restriction, UV in controls decreased by approximately 25%, whereas in B2-KO mice there was almost a 60% drop in urinary output (P=0.001 versus controls). In the controls, water restriction increased UOsm by 347 mOsm/kg H2O, approximately 14% above baseline (NS), whereas in knockout mice the increase was 3 times that seen in the controls: >1000 mOsm/kg H2O (P=0.001 versus controls). Compared with normohydration, UNaV and UKV in the water-restricted state increased more in controls than in B2-KO mice. This difference in electrolyte excretion could be explained by greater dehydration in the controls (dehydration natriuresis). In a second protocol, we tried to mimic the effect of endogenous AVP by exogenous administration of an AVP V2-receptor agonist, desmopressin (DDAVP). To suppress endogenous AVP levels before DDAVP administration, mice were volume-overloaded with dextrose and alcohol. UOsm was 685+/-125 and 561+/-58 mOsm/kg H2O in water-loaded controls and B2-KO mice, respectively. After DDAVP was injected subcutaneously at a dose of 1 microgram/kg, UOsm increased to 1175+/-86 mOsm/kg H2O (Delta+490 mOsm) in the controls and 2347+/-518 mOsm/kg H2O (Delta+1786 mOsm) in B2-KO mice (P<0.05 versus controls). We concluded that water restriction or exogenous administration of an AVP V2-receptor agonist has a greater urinary concentrating effect in B2-KO mice than in controls, suggesting that endogenous kinins acting through B2 receptors oppose the antidiuretic effect of AVP in vivo.  (+info)

Urinary excretion of aquaporin-2 in rat is mediated by a vasopressin-dependent apical pathway. (7/308)

Clinical studies have shown that aquaporin-2 (AQP2), the vasopressin-regulated water channel, is excreted in the urine, and that the excretion increases in response to vasopressin. However, the cellular mechanisms involved in AQP2 excretion are unknown, and it is unknown whether the excretion correlates with AQP2 levels in kidney or levels in the apical plasma membrane. The present study was undertaken to clarify these issues. Immunoblotting of rat urine samples revealed significant excretion of AQP2, whereas AQP3, being a basolateral aquaporin in the same cells, was undetectable. Thus, there was a nonproportional excretion of AQP2 and AQP3 (compared with kidney levels), indicating that AQP2 is excreted predominantly via a selective apical pathway and not by whole cell shedding. Urinary AQP2 was associated with small vesicles, membrane fragments, and multivesicular bodies as determined by immunoelectron microscopy and negative staining techniques. In rats with normal water supply, daily urinary excretion of AQP2 was 3.9+/-0.9% (n = 6) of total kidney expression. Treatment with desmopressin acetate subcutaneously caused a fourfold increase in urinary excretion of AQP2 during 8 h. Forty-eight hours of thirsting, known to increase endogenous vasopressin secretion, resulted in a three-fold increase in kidney AQP2 levels but urinary excretion increased ninefold to 15+/-3% (n = 6) of AQP2 in kidney of thirsted rats. Moreover, rats that were thirsted for 48 h and subsequently allowed free access to water for 24 h produced a decrease in urinary AQP2 excretion to 38+/-15% (n = 6) of that during thirsting. In Brattleboro rats or lithium-treated normal rats completely lacking vasopressin action, and hence having extremely low levels of AQP2 in the apical plasma membrane, AQP2 was undetectable in urine. Thus, conditions with known altered vasopressin levels and altered levels of AQP2 in the apical plasma membrane were associated with corresponding major changes in AQP2 urine excretion. In contrast, in such conditions, kidney AQP2 levels and urinary AQP2 excretion did not show a proportional relationship.  (+info)

Effects of water deprivation on atrial natriuretic peptide secretion and density of binding sites in adrenal glands and kidneys of maternal and fetal rats in late gestation. (8/308)

The effects of water deprivation for 3 days were studied in pregnant rats and their fetuses on day 21 of gestation. Maternal water deprivation induced a significant decrease of the body weight in both maternal and fetal rats. This weight loss was accompanied by significant increases in plasma osmolality and haematocrit in both maternal and fetal rats. Similarly, dehydration significantly decreased plasma atrial natriuretic peptide (ANP) concentrations and increased plasma aldosterone concentrations in maternal and fetal rats. Water-deprived maternal rats presented a significant increase in total ANP receptor density in isolated renal glomeruli and adrenal zona glomerulosa membranes. This increase was due to a significant increase in ANPc receptor density in both renal glomeruli and adrenal zona glomerulosa. The densities of total ANP, ANPb and ANPc receptors in fetal kidneys and adrenal glands were not affected by maternal dehydration. These results suggest that the dehydrated maternal rat is able to up-regulate the number of its ANP receptors in its kidneys and adrenal glands, in response to a decrease in plasma ANP concentrations. In contrast, the fetal rat does not seem to be able to regulate its own ANP receptors in response to maternal dehydration, in spite of a decrease in plasma ANP concentrations.  (+info)