Nitric oxide potentiates cAMP-gated cation current in feeding neurons of Pleurobranchaea californica independent of cAMP and cGMP signaling pathways. (1/10)

Critical roles for nitric oxide (NO) in regulating cell and tissue physiology are broadly appreciated, but aspects remain to be explored. In the mollusk Pleurobranchaea, NO synthase activity is high in CNS ganglia containing motor networks for feeding and locomotion, where a cAMP-gated cation current (I(Na,cAMP)) is also prominent in many neurons. We examined effects of NO on I(Na,cAMP) using voltage-clamp methods developed to analyze cAMP signaling in the live neuron, focusing on the identified metacerebral giant neuron of the feeding network. NO donors enhanced the I(Na,cAMP) response to injected cAMP by an averaged 85%. In dose-response measures, NO increased the current stimulated by cAMP injection without altering either apparent cAMP binding affinity or cooperativity of current activation. NO did not detectably alter levels of native cAMP or synthesis or degradation rates as observable in both current saturation and decay rate of I(Na,cAMP) responses to cAMP injection. NO actions were not exerted by cGMP signaling, as they were not mimicked by cGMP analogue nor blocked by inhibitors of guanylate cyclase and protein kinase G. NO potentiation of I(Na,cAMP) was broadly distributed among many other neurons of the feeding motor network in the buccal ganglion. However, NO did not affect a second type of I(Na,cAMP) found in locomotor neurons of the pedal ganglia. These results suggest that NO acts through a novel mechanism to regulate the gain of cAMP-dependent neuromodulatory pathways that activate I(Na,cAMP) and may thereby affect the set points of feeding network excitability and reactivity to exogenous input.  (+info)

Orienting and avoidance turning are precisely computed by the predatory sea-slug Pleurobranchaea californica McFarland. (2/10)

Computing the direction and amplitude of orienting and avoidance turns is fundamental to prey pursuit and risk avoidance in motile foragers. We examined computation of turns in the predatory sea-slug Pleurobranchaea californica, observing orienting and aversive turn responses to chemotactile stimuli applied to the chemosensory oral veil. We made seven observations: (1) the relation of turn angle/stimulus site on the oral veil was linear; (2) turn amplitudes increased with stimulus strength; (3) turn responses markedly overshot the target stimulus; (4) responses to two simultaneous stimuli at different loci were averaged to an intermediate angle; (5) stimuli could induce sequential turns in which the angles of the first and third turns were similar, a form of working memory; (6) turn direction was affected by appetitive state, so that animals with higher feeding thresholds tended to avoid appetitive stimuli; and (7) avoidance turns induced by mildly noxious stimuli were computed similarly to orienting, while differing in direction. These observations appear to outline a framework of behavior that could be employed for efficient tracking of odor trails, and which is regulated by decision mechanisms that integrate sensation, internal state and experience.  (+info)

5-HT and 5-HT-SO4, but not tryptophan or 5-HIAA levels in single feeding neurons track animal hunger state. (3/10)

Serotonin (5-HT) is an intrinsic modulator of neural network excitation states in gastropod molluscs. 5-HT and related indole metabolites were measured in single, well-characterized serotonergic neurons of the feeding motor network of the predatory sea-slug Pleurobranchaea californica. Indole amounts were compared between paired hungry and satiated animals. Levels of 5-HT and its metabolite 5-HT-SO4 in the metacerebral giant neurons were observed in amounts approximately four-fold and two-fold, respectively, below unfed partners 24 h after a satiating meal. Intracellular levels of 5-hydroxyindole acetic acid and of free tryptophan did not differ significantly with hunger state. These data demonstrate that neurotransmitter levels and their metabolites can vary in goal-directed neural networks in a manner that follows internal state.  (+info)

Nitric oxide potentiates cAMP-gated cation current by intracellular acidification in feeding neurons of pleurobranchaea. (4/10)

 (+info)

Putative lateral inhibition in sensory processing for directional turns. (5/10)

 (+info)

Tetrodotoxin concentrations in Pleurobranchaea maculata: temporal, spatial and individual variability from New Zealand populations. (6/10)

 (+info)

Neurochemical and neuroanatomical identification of central pattern generator neuron homologues in Nudipleura molluscs. (7/10)

 (+info)

Parallel evolution of serotonergic neuromodulation underlies independent evolution of rhythmic motor behavior. (8/10)

 (+info)