Vesicular ATPase-overexpressing cells determine the distribution of malaria parasite oocysts on the midguts of mosquitoes. (1/56)

In Plasmodium-infected mosquitoes, oocysts are preferentially located at the posterior half of the posterior midgut. Because mosquitoes rest vertically after feeding, the effect of gravity on the ingested blood has been proposed as the cause of such a biased distribution. In this paper, we examined the oocyst distribution on the midguts of mosquitoes that were continuously rotated to nullify the effect of gravity and found that the typical pattern of oocyst distribution did not change. Invasion of the midgut epithelium by ookinetes was similarly found to be biased toward the posterior part of the posterior midgut. We examined whether the distribution of oocysts depends on the distribution of vesicular ATPase (V-ATPase)-overexpressing cells that Plasmodium ookinetes preferentially use to cross the midgut epithelium. An antiserum raised against recombinant Aedes aegypti V-ATPase B subunit indicated that the majority of V-ATPase-overexpressing cells in Ae. aegypti and Anopheles gambiae are localized at the posterior part of the posterior midgut. We propose that the typical distribution of oocysts on the mosquito midgut is attributable to the presence and the spatial distribution of the V-ATPase-overexpressing cells in the midgut epithelium.  (+info)

Sex determination in malaria parasites. (2/56)

A century ago, W. G. MacCallum identified distinct male and female forms in malaria parasites of both birds and humans. Since then, scientists have been puzzled by the high female-to-male ratios of parasites in Plasmodium infections and by the mechanism of sex determination. The sex ratio of malaria parasites was shown to become progressively more male as conditions that allow motility and subsequent fertilization by the male parasites become adverse. This resulted from an increased immune response against male gametes, which coincides with intense host erythropoietic activity. Natural and artificial induction of erythropoiesis in vertebrate hosts provoked a shift toward male parasite production. This change in parasite sex ratio led to reduced reproductive success in the parasite, which suggests that sex determination is adaptive and is regulated by the hematologic state of the host.  (+info)

Chitinases of the avian malaria parasite Plasmodium gallinaceum, a class of enzymes necessary for parasite invasion of the mosquito midgut. (3/56)

The Plasmodium ookinete produces chitinolytic activity that allows the parasite to penetrate the chitin-containing peritrophic matrix surrounding the blood meal in the mosquito midgut. Since the peritrophic matrix is a physical barrier that the parasite must cross to invade the mosquito, and the presence of allosamidin, a chitinase inhibitor, in a blood meal prevents the parasite from invading the midgut epithelium, chitinases (3.2.1.14) are potential targets of malaria parasite transmission-blocking interventions. We have purified a chitinase of the avian malaria parasite Plasmodium gallinaceum and cloned the gene, PgCHT1, encoding it. PgCHT1 encodes catalytic and substrate-binding sites characteristic of family 18 glycohydrolases. Expressed in Escherichia coli strain AD494 (DE3), recombinant PgCHT1 was found to hydrolyze polymeric chitin, native chitin oligosaccharides, and 4-methylumbelliferone derivatives of chitin oligosaccharides. Allosamidin inhibited recombinant PgCHT1 with an IC(50) of 7 microM and differentially inhibited two chromatographically separable P. gallinaceum ookinete-produced chitinase activities with IC(50) values of 7 and 12 microM, respectively. These two chitinase activities also had different pH activity profiles. These data suggest that the P. gallinaceum ookinete uses products of more than one chitinase gene to initiate mosquito midgut invasion.  (+info)

A tubular network associated with the brush-border surface of the Aedes aegypti midgut: implications for pathogen transmission by mosquitoes. (4/56)

The mosquito Aedes aegypti is capable of transmitting a variety of pathogens to man and to other vertebrates. The midgut of this insect has been well-studied both as the tissue where the first contact occurs between ingested pathogens and the insect host, and as a model system for blood meal digestion in blood-sucking insects. To understand better the nature of the midgut surface encountered by parasites or viruses, we used scanning electron microscopy to identify the most prominent structures and cell morphologies on the luminal midgut surface. The luminal side of the midgut is a complex and layered set of structures. The microvilli that are found on most, but not all, cells are covered by a network of fine strands that we have termed the microvilli-associated network (MN). The MN strands are membranous, as shown by a membrane bilayer visible in cross sections of MN strands at high magnification in transmission electron micrographs. The MN is found in blood-fed as well as unfed mosquitoes and is not affected by chitinase treatment, suggesting that it is not related to the chitinous peritrophic membrane that is formed only after blood feeding. The cells in the midgut epithelium have two distinct morphologies: the predominant cell type is densely covered with microvilli, while cells with fewer microvilli are found interspersed throughout the midgut. We used lectins to probe for the presence of carbohydrates on the midgut surface. A large number of lectins bind to the luminal midgut surface, suggesting that a variety of sugar linkages are present on the structures visualized by electron microscopy. Some of these lectins partially block attachment of malaria ookinetes to the midgut surface in vitro. Thus, the mosquito midgut epithelium, like the lining of mammalian intestines, is complex, composed of a variety of cell types and extensively covered with surface carbohydrate that may play a role in pathogen attachment.  (+info)

Malaria parasite development in a Drosophila model. (5/56)

Malaria is a devastating public health menace, killing over one million people every year and infecting about half a billion. Here it is shown that the protozoan Plasmodium gallinaceum, a close relative of the human malaria parasite Plasmodium falciparum, can develop in the fruit fly Drosophila melanogaster. Plasmodium gallinaceum ookinetes injected into the fly developed into sporozoites infectious to the vertebrate host with similar kinetics as seen in the mosquito host Aedes aegypti. In the fly, a component of the insect's innate immune system, the macrophage, can destroy Plasmodia. These experiments suggest that Drosophila can be used as a surrogate mosquito for defining the genetic pathways involved in both vector competence and part of the parasite sexual cycle.  (+info)

Invasion in vitro of mosquito midgut cells by the malaria parasite proceeds by a conserved mechanism and results in death of the invaded midgut cells. (6/56)

Using an in vitro culture system, we observed the migration of malaria ookinetes on the surface of the mosquito midgut and invasion of the midgut epithelium. Ookinetes display constrictions during migration to the midgut surface and a gliding motion once on the luminal midgut surface. Invasion of a midgut cell always occurs at its lateral apical surface. Invasion is rapid and is often followed by invasion of a neighboring midgut cell by the ookinete. The morphology of the invaded cells changes dramatically after invasion, and invaded cells die rapidly. Midgut cell death is accompanied by activation of a caspase-3-like protease, suggesting cell death is apoptotic. The events occurring during invasion were identical for two different species of Plasmodium and two different genera of mosquitoes; they probably represent a universal mechanism of mosquito midgut penetration by the malaria parasite.  (+info)

Virus-expressed, recombinant single-chain antibody blocks sporozoite infection of salivary glands in Plasmodium gallinaceum-infected Aedes aegypti. (7/56)

Transgenic mosquitoes resistant to malaria parasites are being developed to test the hypothesis that they may be used to control disease transmission. We have developed an effector portion of an antiparasite gene that can be used to test malaria resistance in transgenic mosquitoes. Mouse monoclonal antibodies that recognize the circumsporozoite protein of Plasmodium gallinaceum can block sporozoite invasion of Aedes aegypti salivary glands. An anti-circumsporozoite monoclonal antibody, N2H6D5, whose corresponding heavy- and light-chain gene variable regions were engineered as a single-chain antibody construct, binds to P. gallinaceum sporozoites and prevents infection of Ae. aegypti salivary glands when expressed from a Sindbis virus. Mean intensities of sporozoite infections of salivary glands in mosquitoes expressing N2scFv were reduced as much as 99.9% when compared to controls.  (+info)

Malaria parasite Plasmodium gallinaceum up-regulates host red blood cell channels. (8/56)

The properties of the malaria parasite-induced permeability pathways in the host red blood cell have been a major area of interest particularly in the context of whether the pathways are host- or parasite-derived. In the present study, the whole-cell configuration of the patch-clamp technique has been used to show that, compared with normal cells, chicken red blood cells infected by Plasmodium gallinaceum exhibited a 5-40-fold larger membrane conductance, which could be further increased up to 100-fold by raising intracellular Ca(2+) levels. The increased conductance was not due to pathways with novel electrophysiological properties. Rather, the parasite increased the activity of endogenous 24 pS stretch-activated non-selective cationic (NSC) and 62 pS calcium-activated NSC channels, and, in some cases, of endogenous 255 pS anionic channels.  (+info)