The specificity of polygalacturonase-inhibiting protein (PGIP): a single amino acid substitution in the solvent-exposed beta-strand/beta-turn region of the leucine-rich repeats (LRRs) confers a new recognition capability. (33/4069)

Two members of the pgip gene family (pgip-1 and pgip-2) of Phaseolus vulgaris L. were expressed separately in Nicotiana benthamiana and the ligand specificity of their products was analysed by surface plasmon resonance (SPR). Polygalacturonase-inhibiting protein-1 (PGIP-1) was unable to interact with PG from Fusarium moniliforme and interacted with PG from Aspergillus niger; PGIP-2 interacted with both PGs. Only eight amino acid variations distinguish the two proteins: five of them are confined within the beta-sheet/beta-turn structure and two of them are contiguous to this region. By site-directed mutagenesis, each of the variant amino acids of PGIP-2 was replaced with the corresponding amino acid of PGIP-1, in a loss-of-function approach. The mutated PGIP-2s were expressed individually in N.benthamiana, purified and subjected to SPR analysis. Each single mutation caused a decrease in affinity for PG from F.moniliforme; residue Q253 made a major contribution, and its replacement with a lysine led to a dramatic reduction in the binding energy of the complex. Conversely, in a gain-of-function approach, amino acid K253 of PGIP-1 was mutated into the corresponding amino acid of PGIP-2, a glutamine. With this single mutation, PGIP-1 acquired the ability to interact with F.moniliforme PG.  (+info)

Performance of beef cows receiving cull beans, sunflower meal, and canola meal as protein supplements while grazing native winter range in Eastern Colorado. (34/4069)

A 2-yr grazing performance study was conducted in Eastern Colorado to evaluate the effects of feeding raw cull beans (Phaseolus vulgaris) or canola meal, compared to sunflower meal, to beef cows grazing dormant, native winter range on body weight and body condition score (BCS) change, reproductive performance, and calf performance. Ninety-five pregnant, spring-calving crossbred cows (541 +/- 51 kg) in 1995 to 1996 and 65 cows (602 +/- 60 kg) in 1996 to 1997 were randomly assigned to one of five treatments (19 and 13 cows per treatment in 1995 to 1996 and 1996 to 1997, respectively): 1) unprocessed Great Northern beans to supply 182 g/d of CP (GNB); 2) canola meal to supply 182 g/d of CP (CM); 3) a mixture of Great Northern beans and sunflower meal, each to supply 91 g/d of CP, for a total of 182 g/d of CP (MIX); 4) sunflower meal to supply 182 g/d of CP (SFM+); and 5) sunflower meal to supply 91 g/d of CP (SFM-). Cow weight and body condition performance were broken into a gestation and a lactation phase in 1995 to 1996; calves were weighed at birth, at the end of the lactation phase in April, and at weaning the following September. Only gestation performance was monitored in 1996 to 1997, and subsequent calf birth and weaning weight were recorded. The SFM- group lost more weight during the gestation phase than other treatments (P < .05), yet no differences were detected for gestation phase daily BCS change, calf birth weight, lactation phase daily weight change, lactation phase daily BCS change, first-service conception rate to AI, or overall pregnancy rate. Off-test calf weight was higher in April for calves from dams of the SFM+ and CM treatments than for calves from dams on the GNB or SFM- treatments (P < .05), and calves from cows on the CM treatment were heavier in April than calves from cows on the MIX treatment (P < .05). No differences in calf weight were present at weaning. Consumption of beans by cows on the GNB treatment was low because of palatability problems. Mixing the beans with sunflower meal in the MIX treatment eliminated this problem. Canola meal, Great Northern beans, or a combination of sunflower meal and Great Northern beans were comparable to sunflower meal as protein supplements for beef cows grazing native winter range, despite obvious palatability problems with the beans.  (+info)

Accidental cell death and generation of reactive oxygen intermediates in human lymphocytes induced by thionins from Viscum album L. (35/4069)

The cytotoxic mechanisms of thionins from Viscum album L., the viscotoxins, were investigated in human granulocytes and lymphocytes. The time course of viscotoxin effects indicate accidental cell death, i.e. membrane permeabilization, degradation of cytoplasm and chromatin, swelling of mitochondria with loss of their cristae, and generation of reactive oxygen intermediates within 1-2 h, followed by secondary apoptosis-associated events. The viscotoxin homologue purothionin from whole-wheat flour and viscotoxin B, however, did not induce cell death in cultured lymphocytes. Cytotoxicity of cationic and amphipathic viscotoxin was prevented only by cleavage of its disulphide bridges.  (+info)

Tissue-specific expression of the beta-subunit of tryptophan synthase in Camptotheca acuminata, an indole alkaloid-producing plant. (36/4069)

Camptothecin is an anticancer drug produced by the monoterpene indole alkaloid pathway in Camptotheca acuminata. As part of an investigation of the camptothecin biosynthetic pathway, we have cloned and characterized a gene from C. acuminata encoding the beta-subunit of tryptophan (Trp) synthase (TSB). In C. acuminata TSB provides Trp for both protein synthesis and indole alkaloid production and therefore represents a junction between primary and secondary metabolism. TSB mRNA and protein were detected in all C. acuminata organs examined, and their abundance paralleled that of camptothecin. Within each shoot organ, TSB was most abundant in vascular tissues. Within the root, however, TSB expression was most abundant in the outer cortex. TSB has been localized to chloroplasts in Arabidopsis, but there was little expression of TSB in C. acuminata tissues where the predominant plastids were photosynthetically competent chloroplasts. Expression of the promoter from the C. acuminata TSB gene in transgenic tobacco plants paralleled expression of the native gene in C. acuminata in all organs except roots. TSB is also highly expressed in C. acuminata during early seedling development at a stage corresponding to peak accumulation of camptothecin, consistent with the idea that Trp biosynthesis and the secondary indole alkaloid pathway are coordinately regulated.  (+info)

Pvlea-18, a member of a new late-embryogenesis-abundant protein family that accumulates during water stress and in the growing regions of well-irrigated bean seedlings. (37/4069)

Pvlea-18 is a novel stress gene whose transcript is present in the dry embryo and the endosperm from bean (Phaseolus vulgaris) seeds. It accumulates in vegetative tissues in response to water deficit and abscisic acid application (J.M. Colmenero-Flores, F. Campos, A. Garciarrubio, A.A. Covarrubias [1997] Plant Mol Biol 35: 393-405). We show that the Pvlea-18 gene encodes a 14-kD protein that accumulates during late embryogenesis. Related proteins have been detected in both monocots and dicots, indicating that PvLEA-18 is a member of a new family of LEA (Late Embryogenesis Abundant) proteins. We also show that the PvLEA-18 transcript and protein accumulate not only in different organs of the bean seedlings during water stress but also in well-irrigated seedlings. This accumulation occurs in seedling regions with more negative values of water and osmotic potentials, such as the growing region of the hypocotyl. This phenomenon has not previously been described for LEA proteins. Immunohistochemical localization showed that the PvLEA-18 protein is present in the nucleus and cytoplasm of all cell types, with a higher accumulation in the epidermis and vascular cylinder tissues, particularly in protoxylem cells and root meristematic tissues. We found a similar localization but a higher abundance in water-stressed seedlings.  (+info)

Purification and partial characterization of a dehydrin involved in chilling tolerance during seedling emergence of cowpea. (38/4069)

Dehydrins are a family of proteins (LEA [late-embryogenesis abundant] D11) commonly induced by environmental stresses associated with low temperature or dehydration and during seed maturation drying. Our previous genetic studies suggested an association of an approximately 35-kD protein (by immunological evidence a dehydrin) with chilling tolerance during emergence of seedlings of cowpea (Vigna unguiculata) line 1393-2-11. In the present study we found that the accumulation of this protein in developing cowpea seeds is coordinated with the start of the dehydration phase of embryo development. We purified this protein from dry seeds of cowpea line 1393-2-11 by using the characteristic high-temperature solubility of dehydrins as an initial enrichment step, which was followed by three chromatography steps involving cation exchange, hydrophobic interaction, and anion exchange. Various characteristics of this protein confirmed that indeed it is a dehydrin, including total amino acid composition, partial amino acid sequencing, and the adoption of alpha-helical structure in the presence of sodium dodecyl sulfate. The propensity of dehydrins to adopt alpha-helical structure in the presence of sodium dodecyl sulfate, together with the apparent polypeptide adhesion property of this cowpea dehydrin, suggests a role in stabilizing other proteins or membranes. Taken together, the genetic, physiological, and physicochemical data are at this stage consistent with a cause-and-effect relationship between the presence in mature seeds of the approximately 35-kD dehydrin, which is the product of a single member of a multigene family, and an increment of chilling tolerance during emergence of cowpea seedlings.  (+info)

A nod factor binding lectin with apyrase activity from legume roots. (39/4069)

A lectin isolated from the roots of the legume, Dolichos biflorus, binds to Nod factors produced by rhizobial strains that nodulate this plant and has a deduced amino acid sequence with no significant homology to any lectin reported to date. This lectin also is an enzyme that catalyzes the hydrolysis of phosphoanhydride bonds of nucleoside di- and triphosphates; the enzyme activity is increased in the presence of carbohydrate ligands. This lectin-nucleotide phosphohydrolase (LNP) has a substrate specificity characteristic of the apyrase category of phosphohydrolases, and its sequence contains four motifs characteristic of this category of enzymes. LNP is present on the surface of the root hairs, and treatment of roots with antiserum to LNP inhibits their ability to undergo root hair deformation and to form nodules on exposure to rhizobia. These properties suggest that this protein may play a role in the rhizobium-legume symbiosis and/or in a related carbohydrate recognition event endogenous to the plant.  (+info)

Oesophageal subepithelial fibrosis: an extension of oral submucosal fibrosis. (40/4069)

Fifty-five patients with oral submucosal fibrosis and an equal number of patients with no evidence of the disease were studied. All patients underwent upper gastrointestinal endoscopy and any abnormality was noted. Multiple oesophageal biopsies were obtained from the upper end of the oesophagus and from any endoscopically observed abnormality. The histological changes in the two groups were assessed blindly by an experienced histopathologist. Histological abnormalities were noted in the oesophageal mucosa in 2% of controls and 66% of patients with oral submucosal fibrosis (p < 0.0001). In the control group, acanthosis was seen in one patient, while in the patient group atrophy of the squamous epithelium was evident in 52%, hyperkeratosis in 52%, parakeratosis in 30%, dyskeratosis in 14%, acanthosis in 14%, and papillomatosis and mild dysplasia in 2% patients. Subepithelial collagenization was seen in 32 (64%) patients. The oesophageal abnormalities were seen more frequently in patients who had consumed Pan masala, Gutka, betel nut, tobacco or a combination of some or all of these, with or without betel leaf, for > or = 5 years compared to those consuming them for a shorter period of time (91% vs 46%, p < 0.001). It is concluded that oral submucosal fibrosis is not a disease confined to the oral cavity; the oesophagus may also be involved in about two-thirds of patients.  (+info)