Elevated intramyocellular lipid concentration in obese subjects is not reduced after diet and exercise training. (65/816)

To determine the effects of weight loss on intramyocellular energy substrates, vastus lateralis muscle biopsies were taken from six obese subjects (body mass index 34 +/- 5 kg/m(2)) before, after 15 wk of energy restriction (ER; -700 kcal/day), and after a further average 20.7 +/- 1.6 wk of endurance training plus low-fat diet (ET-LFD). Body weight fell from 100 +/- 6 to 89 +/- 6 kg during ER and to 84 +/- 4 kg after ET-LFD. Lipids and glycogen were histochemically measured in type I, IIA, and IIB fibers. Total muscle glycogen content (MGC; per 100 fibers) decreased after ER [from 72 +/- 13 to 55 +/- 8 arbitrary units (AU)]. A similar but not significant decrease was seen in total muscle lipid content (MLC; 14 +/- 5 to 9 +/- 1 AU). After ET-LFD, MGC returned to initial values (74 +/- 8 AU), and MLC approached near-initial values (12 +/- 3 AU). Individual fiber lipid concentration did not change throughout the protocol in all fiber types, whereas glycogen concentration increased after ET-LFD. The training effects of ET-LFD were measured as increasing activities of key mitochondrial enzymes. Although total muscle energy reserves can be reduced after weight loss, their concentration within individual myofibers remains elevated. Weight loss does not appear sufficient to correct the potential detrimental effects of high intracellular lipid concentrations.  (+info)

Effects of isometric training on the elasticity of human tendon structures in vivo. (66/816)

The present study aimed to investigate the effect of isometric training on the elasticity of human tendon structures. Eight subjects completed 12 wk (4 days/wk) of isometric training that consisted of unilateral knee extension at 70% of maximal voluntary contraction (MVC) for 20 s per set (4 sets/day). Before and after training, the elongation of the tendon structures in the vastus lateralis muscle was directly measured using ultrasonography while the subjects performed ramp isometric knee extension up to MVC. The relationship between the estimated muscle force and tendon elongation (L) was fitted to a linear regression, the slope of which was defined as stiffness of the tendon structures. The training increased significantly the volume (7.6+/-4.3%) and MVC torque (33.9+/-14.4%) of quadriceps femoris muscle. The L values at force production levels beyond 550 N were significantly shorter after training. The stiffness increased significantly from 67.5+/-21.3 to 106.2+/-33.4 N/mm. Furthermore, the training significantly increased the rate of torque development (35.8 +/- 20.4%) and decreased electromechanical delay (-18.4+/-3.8%). Thus the present results indicate that isometric training increases the stiffness and Young's modulus of human tendon structures as well as muscle strength and size. This change in the tendon structures would be assumed to be an advantage for increasing the rate of torque development and shortening the electromechanical delay.  (+info)

Effects of fat adaptation and carbohydrate restoration on prolonged endurance exercise. (67/816)

We determined the effect of fat adaptation on metabolism and performance during 5 h of cycling in seven competitive athletes who consumed a standard carbohydrate (CHO) diet for 1 day and then either a high-CHO diet (11 g. kg(-1)x day(-1) CHO, 1 g x kg(-1) x day(-1) fat; HCHO) or an isoenergetic high-fat diet (2.6 g x kg(-1) x day(-1) CHO, 4.6 g x kg(-1) x day(-1) fat; fat-adapt) for 6 days. On day 8, subjects consumed a high-CHO diet and rested. On day 9, subjects consumed a preexercise meal and then cycled for 4 h at 65% peak O(2) uptake, followed by a 1-h time trial (TT). Compared with baseline, 6 days of fat-adapt reduced respiratory exchange ratio (RER) with cycling at 65% peak O(2) uptake [0.78 +/- 0.01 (SE) vs. 0.85 +/- 0.02; P < 0.05]. However, RER was restored by 1 day of high-CHO diet, preexercise meal, and CHO ingestion (0.88 +/- 0.01; P < 0.05). RER was higher after HCHO than fat-adapt (0.85 +/- 0.01, 0.89 +/- 0.01, and 0.93 +/- 0.01 for days 2, 8, and 9, respectively; P < 0.05). Fat oxidation during the 4-h ride was greater (171 +/- 32 vs. 119 +/- 38 g; P < 0.05) and CHO oxidation lower (597 +/- 41 vs. 719 +/- 46 g; P < 0.05) after fat-adapt. Power output was 11% higher during the TT after fat-adapt than after HCHO (312 +/- 15 vs. 279 +/- 20 W; P = 0.11). In conclusion, compared with a high-CHO diet, fat oxidation during exercise increased after fat-adapt and remained elevated above baseline even after 1 day of a high-CHO diet and increased CHO availability. However, this study failed to detect a significant benefit of fat adaptation to performance of a 1-h TT undertaken after 4 h of cycling.  (+info)

Molecular adaptations in human skeletal muscle to endurance training under simulated hypoxic conditions. (68/816)

This study was performed to explore changes in gene expression as a consequence of exercise training at two levels of intensity under normoxic and normobaric hypoxic conditions (corresponding to an altitude of 3,850 m). Four groups of human subjects trained five times a week for a total of 6 wk on a bicycle ergometer. Muscle biopsies were taken, and performance tests were carried out before and after the training period. Similar increases in maximal O(2) uptake (8.3-13.1%) and maximal power output (11.4-20.8%) were found in all groups. RT-PCR revealed elevated mRNA concentrations of the alpha-subunit of hypoxia-inducible factor 1 (HIF-1) after both high- (+82.4%) and low (+78.4%)-intensity training under hypoxic conditions. The mRNA of HIF-1alpha(736), a splice variant of HIF-1alpha newly detected in human skeletal muscle, was shown to be changed in a similar pattern as HIF-1alpha. Increased mRNA contents of myoglobin (+72.2%) and vascular endothelial growth factor (+52.4%) were evoked only after high-intensity training in hypoxia. Augmented mRNA levels of oxidative enzymes, phosphofructokinase, and heat shock protein 70 were found after high-intensity training under both hypoxic and normoxic conditions. Our findings suggest that HIF-1 is specifically involved in the regulation of muscle adaptations after hypoxia training. Fine-tuning of the training response is recognized at the molecular level, and with less sensitivity also at the structural level, but not at global functional responses like maximal O(2) uptake or maximal power output.  (+info)

Effects of 3-day bed rest on physiological responses to graded exercise in athletes and sedentary men. (69/816)

To test the hypotheses that short-term bed-rest (BR) deconditioning influences metabolic, cardiorespiratory, and neurohormonal responses to exercise and that these effects depend on the subjects' training status, 12 sedentary men and 10 endurance- and 10 strength-trained athletes were submitted to 3-day BR. Before and after BR they performed incremental exercise test until volitional exhaustion. Respiratory gas exchange and heart rate (HR) were recorded continuously, and stroke volume (SV) was measured at submaximal loads. Blood was taken for lactate concentration ([LA]), epinephrine concentration ([Epi]), norepinephrine concentration ([NE]), plasma renin activity (PRA), human growth hormone concentration ([hGH]), testosterone, and cortisol determination. Reduction of peak oxygen uptake (VO(2 peak)) after BR was greater in the endurance athletes than in the remaining groups (17 vs. 10%). Decrements in VO(2 peak) correlated positively with the initial values (r = 0.73, P < 0.001). Resting and exercise respiratory exchange ratios were increased in athletes. Cardiac output was unchanged by BR in all groups, but exercise HR was increased and SV diminished in the sedentary subjects. The submaximal [LA] and [LA] thresholds were decreased in the endurance athletes from 71 to 60% VO(2 peak) (P < 0.001); they also had an earlier increase in [NE], an attenuated increase in [hGH], and accentuated PRA and cortisol elevations during exercise. These effects were insignificant in the remaining subjects. In conclusion, reduction of exercise performance and modifications in neurohormonal response to exercise after BR depend on the previous level and mode of physical training, being the most pronounced in the endurance athletes.  (+info)

Effect of caffeine co-ingested with carbohydrate or fat on metabolism and performance in endurance-trained men. (70/816)

We examined the effect of caffeine co-ingested with either carbohydrate or fat on metabolism and performance in eight endurance-trained subjects who performed a random order of four experimental trials consisting of 120 min of steady-state ergometer cycling at 70 % of maximal O(2) uptake (SS) followed by a time trial in which subjects completed a set amount of work (7 kJ kg-1) as quickly as possible. One hour before SS subjects ingested either 2.6 g kg-1 carbohydrate (CHO); 2.6 g kg-1 CHO + 6 mg kg-1 caffeine (CHO + CAF); 1.2 g kg-1 fat with 2000 U I.V. heparin (FAT); or 1.2 g kg-1 fat with 2000 U I.V. heparin + 6 mg kg-1 caffeine (FAT + CAF). The rate of carbohydrate oxidation was higher (micromol kg-1 min-1: CHO, 243 +/- 39 and CHO + CAF, 239 +/- 30 vs. FAT, 196 +/- 48 and FAT + CAF, 191 +/- 55; P < 0.05, values are means +/- S.D.) and the rate of fat oxidation lower (micromol kg-1 min-1: CHO, 19 +/- 8 and CHO + CAF, 22 +/- 7 vs. FAT, 35 +/- 19 and FAT + CAF, 37 +/- 17; P < 0.05) with carbohydrate than fat ingestion. Yet despite lower carbohydrate use with fat feeding, the time taken to complete the time trial was less after carbohydrate than after fat ingestion (min: CHO, 30.37 +/- 7.42 and CHO + CAF, 29.12 +/- 5.62 vs. FAT, 33.02 +/- 8.50 and FAT + CAF, 32.78 +/- 7.70; P < 0.05). We conclude that (1) caffeine co-ingested with either carbohydrate or fat meals has no additive effect on substrate utilization or exercise performance and (2) carbohydrate ingestion before exercise improves subsequent time trial performance compared with fat ingestion. Experimental Physiology (2001) 86.1, 137-144.  (+info)

Drugs in sport - the role of the physician. (71/816)

Sportsmen have used anabolic steroids since the 1950s and yet it was not until the 1980s that we, as physicians, admitted that they could improve performance. We now find ourselves in the insidious position of being unable to predict convincingly either safety or major health risks with performance-enhancing drug use. The use of performance-enhancing drugs is no longer limited to the elite athlete. In 1993 the Canadian Center for Drug-free Sport estimated that 83 000 children between the ages of 11 and 18 had used anabolic steroids in the previous 12 months. Recent evidence suggests anabolic steroids are now the third most commonly offered drugs to children in the UK, behind cannabis and amphetamines. The role of the physician of today is to regain our position of impartiality and objectivity within both the sporting and general community. Only then will we be able to pursue a harm minimisation strategy designed to convince the public that it is better to be the best you can be naturally. For the majority, the improvement through the use of performance-enhancing drugs can equally be achieved through dietary and training advice. For the elite athlete, what price a gold medal that is tarnished by deceit? Its value then can only lie with the sponsors and politicians, for they can no longer claim to be sportsmen, only entertainers.  (+info)

Training-induced changes in peritendinous type I collagen turnover determined by microdialysis in humans. (72/816)

1. Acute exercise is found to increase collagen type I formation locally in peritendinous connective tissue of the Achilles' tendon in humans, as determined from changes in interstitial concentrations of collagen propeptide (PICP) and a collagen degradation product (ICTP) by the use of microdialysis catheters. However, the local collagen type I turnover response to training is unknown. 2. Nineteen young males were studied before and after 4 and 11 weeks of physical training. Microdialysis catheters with a high molecular mass cut-off value (3000 kDa), allowing the determination of PICP and ICTP, were placed in the peritendinous space ventral to the Achilles' tendon, under ultrasound guidance, in both legs. The catheters were perfused with a Ringer-acetate solution containing (3)H-labelled human type IV collagen for in vivo recovery determination (relative recovery: 79 +/- 2 %, mean +/- S.E.M.). 3. The PICP concentration in the peritendinous tissue increased in response to training (from 5 +/- 1 to 35 +/- 5 microg l(-1) (4 weeks), P < 0.05) and remained elevated throughout the training period (28 +/- 6 microg l(-1), 11 weeks). Tissue ICTP only rose transiently with training (from 2.2 +/- 0.1 to 2.8 +/- 0.2 microg l(-1) (4 weeks), P < 0.05, and 2.5 +/- 0.2 microg l(-1) (11 weeks), P > 0.05 vs. basal). Plasma PICP was unchanged whereas plasma ICTP declined by 17 % in response to training. 4. The findings indicate that physical training results in an increased turnover of collagen type I in local connective tissue of the peritendinous Achilles' region. Early in the process both synthesis and degradation are elevated, whereas later, the anabolic processes are dominating causing a net synthesis of type I collagen in tendon-related tissue in humans.  (+info)