Genomic fingerprinting and development of a dendrogram for Brucella spp. isolated from seals, porpoises, and dolphins. (1/293)

Genomic DNA from reference strains and biovars of the genus Brucella was analyzed using pulsed-field gel electrophoresis (PFGE). Fingerprints were compared to estimate genetic relatedness among the strains and to obtain information on evolutionary relationships. Electrophoresis of DNA digested with the restriction endonuclease XbaI produced fragment profiles for the reference type strains that distinguished these strains to the level of species. Included in this study were strains isolated from marine mammals. The PFGE profiles from these strains were compared with those obtained from the reference strains and biovars. Isolates from dolphins had similar profiles that were distinct from profiles of Brucella isolates from seals and porpoises. Distance matrix analyses were used to produce a dendrogram. Biovars of B. abortus were clustered together in the dendrogram; similar clusters were shown for biovars of B. melitensis and for biovars of B. suis. Brucella ovis, B. canis, and B. neotomae differed from each other and from B. abortus, B. melitensis, and B. suis. The relationship between B. abortus strain RB51 and other Brucella biovars was compared because this strain has replaced B. abortus strain 19 for use as a live vaccine in cattle and possibly in bison and elk. These results support the current taxonomy of Brucella species and the designation of an additional genomic group(s) of Brucella. The PFGE analysis in conjunction with distance matrix analysis was a useful tool for calculating genetic relatedness among the Brucella species.  (+info)

Convective oxygen transport and tissue oxygen consumption in Weddell seals during aerobic dives. (2/293)

Unlike their terrestrial counterparts, marine mammals stop breathing and reduce their convective oxygen transport while performing activities (e.g. foraging, courtship, aggressive interactions, predator avoidance and migration) that require sustained power output during submergence. Since most voluntary dives are believed to remain aerobic, the goal of this study was to examine the potential importance of the dive response in optimizing the use of blood and muscle oxygen stores during dives involving different levels of muscular exertion. To accomplish this, we designed a numerical model based on Fick's principle that integrated cardiac output (Vb), regional blood flow, convective oxygen transport (Q(O2)), muscle oxymyoglobin desaturation and regional rates of oxygen consumption (VO2). The model quantified how the optimal matching or mismatching of QO2 to VO2 affected the aerobic dive limit (ADL). We chose an adult Weddell seal Leptonycotes weddellii on which to base our model because of available data on the diving physiology and metabolism of this species. The results show that the use of blood and muscle oxygen stores must be completed at the same time to maximize the ADL for each level of VO2. This is achieved by adjusting Vb (range 19-94 % of resting levels) and muscle QO2 according to the rate of muscle oxygen consumption (VMO2). At higher values of VMO2, Vb and muscle perfusion must increase to maintain an appropriate QO2/VO2 ratio so that available blood and muscle oxygen stores are depleted at the same time. Although the dive response does not sequester blood oxygen exclusively for brain and heart metabolism during aerobic dives, as it does during forced submersion, a reduction in Vb and muscle perfusion below resting levels is necessary to maximize the ADL over the range of diving VO2 (approximately 2-9 ml O2 min-1 kg-1). Despite the reduction in Vb, convective oxygen transport is adequate to maintain aerobic metabolism and normal function in the splanchnic organs, kidneys and other peripheral tissues. As a result, physiological homeostasis is maintained throughout the dive. The model shows that the cardiovascular adjustments known as the dive response enable the diving seal to balance the conflicting metabolic demands of (1) optimizing the distribution and use of blood and muscle oxygen stores to maximize the ADL over the normal range of diving VO2 and (2) ensuring that active muscle receives adequate oxygen as VMO2 increases.  (+info)

High aerobic capacities in the skeletal muscles of pinnipeds: adaptations to diving hypoxia. (3/293)

The objective was to assess the aerobic capacity of skeletal muscles in pinnipeds. Samples of swimming and nonswimming muscles were collected from Steller sea lions (Eumetopias jubatus, n = 27), Northern fur seals (Callorhinus ursinus, n = 5), and harbor seals (Phoca vitulina, n = 37) by using a needle biopsy technique. Samples were either immediately fixed in 2% glutaraldehyde or frozen in liquid nitrogen. The volume density of mitochondria, myoglobin concentration, citrate synthase activity, and beta-hydroxyacyl-CoA dehydrogenase was determined for all samples. The swimming muscles of seals had an average total mitochondrial volume density per volume of fiber of 9.7%. The swimming muscles of sea lions and fur seals had average mitochondrial volume densities of 6.2 and 8.8%, respectively. These values were 1.7- to 2.0-fold greater than in the nonswimming muscles. Myoglobin concentration, citrate synthase activity, and beta-hydroxyacyl-CoA dehydrogenase were 1.1- to 2. 3-fold greater in the swimming vs. nonswimming muscles. The swimming muscles of pinnipeds appear to be adapted for aerobic lipid metabolism under the hypoxic conditions that occur during diving.  (+info)

CT examination of the head of the Baikal seal (Phoca sibirica). (4/293)

We carried out a computerised tomographic (CT) examination to elucidate the modifications in the head related to orbital enlargement in the Baikal seal. Transverse CT images showed that (1) the external frontal contours and the frontal sinuses are compressed medially and ventrally by the orbital enlargement; (2) the caudal part of the nasal cavity and nasopharynx are compacted ventrally; and (3) the cranial cavity is displaced caudally. The neurocranium is obviously separated from the facial part in the transverse plane at the caudal region of the orbit. The disposition of the mandible, zygomatic arch, temporal bone, and the masseter, temporal, digastric and pterygoid muscles is changed by the enlarged orbit in the 3-dimensional reorganisation of the head in this species. It is suggested that adaptation for the Lake Baikal environment primarily resulted in orbital enlargement, and that the altered orbital design may subsequently have influenced the form and function of the masticatory and respiratory system.  (+info)

Molecular genetic diversity and evolution at the MHC DQB locus in four species of pinnipeds. (5/293)

Variation was investigated at exon 2 (including part of the putative peptide-binding region) of the class II major histocompatibility complex (MHC) DQB locus for two congeneric phocid seal species and two congeneric otariid seal species. Polymorphism in one phocid species, the southern elephant seal (Mirounga leonina), was comparable to that seen in human populations, while the other phocid, the northern elephant seal (Mirounga angustirostris), has been through a severe population bottleneck and exhibited much less variation at this locus. A phylogenetic comparison of the four species was consistent with the trans-specific pattern of evolution described for other taxa at this locus, and relative nonsynonymous and synonymous substitution rates suggest the maintenance of polymorphisms by natural selection. A comparison of sequence patterns also suggested that some variation could have been generated through recombinational events, primarily within genera. These results suggest a pattern of evolution of the immune response in pinnipeds similar to that in terrestrial mammal species.  (+info)

Mercury in Alaskan Eskimo mothers and infants. (6/293)

The potential danger of natural mercury accumulation in the diet of the Eskimo is evaluated through mercury levels determined in cord blood, placenta, maternal blood, hair, and milk of 38 maternal-infant pairs from Anchorage and the Yukon-Kuskokwim Delta. Although mercury levels are not discernably dangerous, trends to larger accumulations in maternal and fetal RBC and placental tissue with proximity to the sea and consumption of seals during pregnancy provide the basis for considering possible indicators of neonatal involvement. Mercury level in RBC from cord blood appeared as the best potential indicator of this involvement, although relationships with the mother's diet and level of mercury in the placenta also appear useful. In this area, average and maximal mercury levels in cord blood are 39 and 78 ng/ml, respectively, far below the acknowledged toxic level in infants of these mothers who eat seals or fish every day during their pregnancy.  (+info)

Amplification of a 500-base-pair fragment from cultured isolates of Mycobacterium bovis. (7/293)

The presence of a 500-bp fragment which amplifies a region from the genome of Mycobacterium bovis (J. G. Rodriguez, G. A. Meija, P. Del Portillo, M. E. Patarroyo, and L. A. Murillo, Microbiology 141:2131-2138, 1995) was evaluated by carrying out PCR on 121 M. bovis isolates. The M. bovis strains, previously characterized by culture and biochemical tests, were isolated from cattle in different regions of Argentina, Mexico, and Colombia. Four additional strains isolated from sea lions that belong to the M. tuberculosis complex were also included in the study. All of the isolates tested were PCR positive, rendering the expected 500-bp band and giving a correlation of 100% with previous microbiological characterization. Southern blot analysis revealed a common band of 1, 800 bp and a polymorphic high-molecular-mass hybridization pattern. The results show that this assay may be useful for diagnosis and identification of M. bovis in cattle.  (+info)

Receptor specificity of influenza A viruses from sea mammals correlates with lung sialyloligosaccharides in these animals. (8/293)

The distribution of specific receptors on target organs is a major factor in the host range restriction of influenza A viruses. To assess the correlation between host receptors and the receptor specificity of influenza A viruses from sea mammals, we examined the receptors for influenza A virus in seal and whale lungs. A binding assay using two sialyloligosaccharide (SAalpha2,3Gal and SAalpha2,6Gal)-specific lectins showed that SAalpha2,3Gal, but not SAalpha2,6Gal, was found in both seal and whale lungs. Correspondingly, seal and whale influenza viruses preferentially recognized SAalpha2,3Gal, but not SAalpha2,6Gal. These results indicate that sialyloligosaccharides present at the replication site of influenza A viruses correlate with the receptor recognition of the viruses isolated from sea mammals.  (+info)