Task-dependent modulation of multi-digit force coordination patterns. (49/123)

When grasping and holding an object with five digits under a variety of task constraints, subjects use well-defined force coordination patterns, i.e., consistent force covariations and in-phase synchronization among all digit pairs. The question arises as to whether these force coordination patterns are default mechanisms for controlling multi-digit force production or whether they are specific to lifting and holding an object. To address this question, we asked subjects to grasp a manipulandum and exert forces with five digits simultaneously so as to match a force template measured from an actual object grasp, lift, and hold task (GLH). Unlike GLH, the force production task (FP) lacked the constraint of having to maintain object stability against gravity. The amplitude of individual finger forces and force covariations were similar for both tasks (with the exception of the little finger, which tended to produce less force in FP). Nonetheless, when multiple grip forces were not required to hold the manipulandum against gravity (FP), there was a significantly lower tendency for forces to be synchronized with higher intertrial variability of phase differences between forces exerted by all digit-pairs. Furthermore, the tendency for force phase differences to cluster at 0 degrees was lower for FP than GLH. These results suggest that some aspects of the control of multi-digit grasping, i.e., force synchronization, are specific to object lift and hold rather than to the production of multi-digit forces. Modeling work suggests that motor unit synchronization might play an important role in the modulation of force synchronization patterns.  (+info)

The Arabidopsis mutant alh1 illustrates a cross talk between ethylene and auxin. (50/123)

Ethylene or its precursor 1-aminocyclopropane-1-carboxylic acid (ACC) can stimulate hypocotyl elongation in light-grown Arabidopsis seedlings. A mutant, designated ACC-related long hypocotyl 1 (alh1), that displayed a long hypocotyl in the light in the absence of the hormone was characterized. Etiolated alh1 seedlings overproduced ethylene and had an exaggerated apical hook and a thicker hypocotyl, although no difference in hypocotyl length was observed when compared with wild type. Alh1 plants were less sensitive to ethylene, as reflected by reduction of ACC-mediated inhibition of hypocotyl growth in the dark and delay in flowering and leaf senescence. Alh1 also had an altered response to auxin, whereas auxin levels in whole alh1 seedlings remained unaffected. In contrast to wild type, alh1 seedlings showed a limited hypocotyl elongation when treated with indole-3-acetic acid. Alh1 roots had a faster response to gravity. Furthermore, the hypocotyl elongation of alh1 and of ACC-treated wild type was reverted by auxin transport inhibitors. In addition, auxin up-regulated genes were ectopically expressed in hypocotyls upon ACC treatment, suggesting that the ethylene response is mediated by auxins. Together, these data indicate that alh1 is altered in the cross talk between ethylene and auxins, probably at the level of auxin transport.  (+info)

Enhanced gravitropism of roots with a disrupted cap actin cytoskeleton. (51/123)

The actin cytoskeleton has been proposed to be a major player in plant gravitropism. However, understanding the role of actin in this process is far from complete. To address this problem, we conducted an analysis of the effect of Latrunculin B (Lat B), a potent actin-disrupting drug, on root gravitropism using various parameters that included detailed curvature kinetics, estimation of gravitropic sensitivity, and monitoring of curvature development after extended clinorotation. Lat B treatment resulted in a promotion of root curvature after a 90 degrees reorientation in three plant species tested. More significantly, the sensitivity of maize (Zea mays) roots to gravity was enhanced after actin disruption, as determined from a comparison of presentation time of Lat B-treated versus untreated roots. A short 10-min gravistimulus followed by extended rotation on a 1-rpm clinostat resulted in extensive gravitropic responses, manifested as curvature that often exceeded 90 degrees. Application of Lat B to the cap or elongation zone of maize roots resulted in the disruption of the actin cytoskeleton, which was confined to the area of localized Lat B application. Only roots with Lat B applied to the cap displayed the strong curvature responses after extended clinorotation. Our study demonstrates that disrupting the actin cytoskeleton in the cap leads to the persistence of a signal established by a previous gravistimulus. Therefore, actin could function in root gravitropism by providing a mechanism to regulate the proliferation of a gravitropic signal originating from the cap to allow the root to attain its correct orientation or set point angle.  (+info)

Protection of negative gravitaxis in Euglena gracilis Z against gamma-ray irradiation by Trolox C. (52/123)

The protective effects of Trolox on the inhibition of negative gravitaxis in Euglena gracilis exposed to 200 Gy 60Co gamma-rays were examined using different concentrations (1, 10 and 100 microM). The orientation precision of the negative gravitaxis was quantified using the r-value. A significant decrease in the r-value was observed in gamma-irradiated samples (0.18+/-0.03) compared to those of non-irradiated samples (0.47+/-0.03). There were no significant changes in the r-value of cells exposed to 200 Gy gamma-rays by the addition of 1 or 10 microM of Trolox. A significant increase (0.19) in the r-value of cells exposed to 200 Gy with 100 microM Trolox was observed. The results indicates that Trolox at a concentration of 100 microM protects negative gravitaxis against 60Co gamma-ray irradiation at a dose of 200 Gy. It also suggests that the negative gravitaxis of Euglena gracilis is affected by free radicals.  (+info)

A SNARE complex containing SGR3/AtVAM3 and ZIG/VTI11 in gravity-sensing cells is important for Arabidopsis shoot gravitropism. (53/123)

Plants can sense the direction of gravity and change the growth orientation of their organs. The molecular mechanisms of gravity sensing and signal transduction during gravitropism are not well known. We have isolated several shoot gravitropism (sgr) mutants of Arabidopsis. The sgr3-1 mutant exhibits a reduced gravitropic response in the inflorescence stems. In the inflorescence stems of Arabidopsis, gravity is sensed in endodermal cells that contain sedimentable amyloplasts. In sgr3-1, some amyloplasts in the endodermis failed to sediment in the direction of gravity. SGR3 encodes a syntaxin, AtVAM3, which had previously been cloned as a homologue of yeast Vam3p. AtVAM3 is localized to the prevacuolar compartment and vacuole and is suggested to function in vesicle transport to the vacuole. We have also cloned another soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE), ZIG/AtVTI11, a mutation that causes abnormal gravitropism. This mutant displayed an abnormal distribution of amyloplasts in the endodermal cells similar to that in sgr3-1. Endodermis-specific expression of SGR3 and ZIG by using the SCR promoter could complement the abnormal shoot gravitropism of each mutant. Protein-protein interaction between AtVAM3 and AtVTI11 in the endodermal cells was detected immunologically. The sgr3-1 mutation appeared to reduce the affinity of AtVAM3 for AtVTI11 or SYP5. These results suggest that vesicle transport to the prevacuolar compartment/vacuole in the endodermal cells, mediated by a specific SNARE complex containing AtVAM3 and AtVTI11, plays an important role in shoot gravitropism.  (+info)

The ARG1-LIKE2 gene of Arabidopsis functions in a gravity signal transduction pathway that is genetically distinct from the PGM pathway. (54/123)

The arl2 mutants of Arabidopsis display altered root and hypocotyl gravitropism, whereas their inflorescence stems are fully gravitropic. Interestingly, mutant roots respond like the wild type to phytohormones and an inhibitor of polar auxin transport. Also, their cap columella cells accumulate starch similarly to wild-type cells, and mutant hypocotyls display strong phototropic responses to lateral light stimulation. The ARL2 gene encodes a DnaJ-like protein similar to ARG1, another protein previously implicated in gravity signal transduction in Arabidopsis seedlings. ARL2 is expressed at low levels in all organs of seedlings and plants. arl2-1 arg1-2 double mutant roots display kinetics of gravitropism similar to those of single mutants. However, double mutants carrying both arl2-1 and pgm-1 (a mutation in the starch-biosynthetic gene PHOSPHOGLUCOMUTASE) at the homozygous state display a more pronounced root gravitropic defect than the single mutants. On the other hand, seedlings with a null mutation in ARL1, a paralog of ARG1 and ARL2, behave similarly to the wild type in gravitropism and other related assays. Taken together, the results suggest that ARG1 and ARL2 function in the same gravity signal transduction pathway in the hypocotyl and root of Arabidopsis seedlings, distinct from the pathway involving PGM.  (+info)

Vestibular defects in head-tilt mice result from mutations in Nox3, encoding an NADPH oxidase. (55/123)

The vestibular system of the inner ear is responsible for the perception of motion and gravity. Key elements of this organ are otoconia, tiny biomineral particles in the utricle and the saccule. In response to gravity or linear acceleration, otoconia deflect the stereocilia of the hair cells, thus transducing kinetic movements into sensorineural action potentials. Here, we present an allelic series of mutations at the otoconia-deficient head tilt (het) locus, affecting the gene for NADPH oxidase 3 (Nox3). This series of mutations identifies for the first time a protein with a clear enzymatic function as indispensable for otoconia morphogenesis.  (+info)

Patterns of auxin distribution during gravitational induction of reaction wood in poplar and pine. (56/123)

Gravistimulation of tree stems affects wood development by unilaterally inducing wood with modified properties, called reaction wood. Commonly, it also stimulates cambial growth on the reaction wood side. Numerous experiments involving applications of indole-3-acetic acid (IAA) or IAA-transport inhibitors have suggested that reaction wood is induced by a redistribution of IAA around the stem. However, in planta proof for this model is lacking. Therefore, we have mapped endogenous IAA distribution across the cambial region tissues in both aspen (Populus tremula, denoted poplar) and Scots pine (Pinus sylvestris) trees forming reaction wood, using tangential cryosectioning combined with sensitive gas chromatography-mass spectrometry analysis. Moreover, we have documented the kinetics of IAA during reaction wood induction in these species. Our analysis of endogenous IAA demonstrates that reaction wood is formed without any obvious alterations in IAA balance. This is in contrast to gravitropic responses in roots and shoots where a redistribution of IAA has been documented. It is also of interest that cambial growth on the tension wood side was stimulated without an increase in IAA. Taken together, our results suggest a role for signals other than IAA in the reaction wood response, or that the gravitational stimulus interacts with the IAA signal transduction pathway.  (+info)