Acquired immunity and postnatal clinical protection in childhood cerebral malaria. (1/542)

By analysing data on the age distribution of cerebral malaria among sites of different transmission intensities, we conclude that the most plausible explanation for the epidemiological patterns seen is that (i) cerebral malaria is caused by a distinct set of Plasmodium falciparum antigenic types; (ii) these antigenic types or 'CM strains' are very common and induce strong strain-specific immunity; and (iii) the postnatal period of protection against cerebral malaria is much longer than the period of protection against other forms of severe disease. The alternative hypothesis that cerebral malaria may be caused by any 'strain' of P. falciparum is compatible with the data only if a single exposure is sufficient to protect against further episodes. This is not consistent with observations on the history of exposure of patients with cerebral malaria. Finally, it is clear that although the delayed peak in incidence of cerebral malaria (with age) can be generated by assuming that subsequent exposures carry a higher risk of disease, such an explanation is not compatible with the observation that severe disease rates are low among infants and young children in areas of high transmissibility.  (+info)

Thiolated recombinant human tumor necrosis factor-alpha protects against Plasmodium berghei K173-induced experimental cerebral malaria in mice. (2/542)

The introduction of reactive thiol groups in recombinant human tumor necrosis factor (TNF) alpha (rhTNF-alpha) by the reagent succinimidyl-S-acetylthioacetate resulted in the formation of a chemically stabilized rhTNF-alpha trimer (rhTNFalpha-AT; as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis). rhTNFalpha-AT showed a substantially enhanced protective efficacy against the development of experimental murine cerebral malaria (ECM) after intravenous injection compared to the protective efficacy of nonmodified rhTNF-alpha. Administration of thiolated rhTNF-alpha with protected thiol groups (rhTNFalpha-ATA; no stabilized trimers in vitro) exhibited the same protective efficacy against ECM, while in vitro bioactivity was reduced. Parasitemia was significantly suppressed in rhTNF-treated mice that were protected against ECM but not in treated mice that developed ECM. Protection against ECM was not related to increased concentrations in plasma of soluble TNF receptor 1 and 2 directly after injection or at the moment of development of ECM in nontreated mice. The results indicate that thiolation of rhTNF-alpha leads to the formation of stable trimers with increased potential in vivo.  (+info)

Cerebral malaria versus bacterial meningitis in children with impaired consciousness. (3/542)

Cerebral malaria (CM) and acute bacterial meningitis (ABM) are the two common causes of impaired consciousness in children presenting to hospital in sub-Sahara Africa. Since the clinical features of the two diseases may be very similar, treatment is often guided by the initial laboratory findings. However, no detailed studies have examined the extent to which the laboratory findings in these two diseases may overlap. We reviewed data from 555 children with impaired consciousness admitted to Kilifi District Hospital, Kenya. Strictly defined groups were established based on the malaria slide, cerebrospinal fluid (CSF) leucocyte count and the results of blood and CSF culture and CSF bacterial antigen testing. Our data suggests significant overlap in the initial CSF findings between CM and ABM. The absolute minimum proportions of children with impaired consciousness and malaria parasitaemia who also had definite bacterial meningitis were 4% of all children and 14% of children under 1 year of age. The estimated maximum proportion of all children with impaired consciousness and malaria parasitaemia in whom the diagnosis was dual or unclear was at least 13%. The finding of malaria parasites in the blood of an unconscious child in sub-Saharan Africa is not sufficient to establish a diagnosis of cerebral malaria, and acute bacterial meningitis must be actively excluded in all cases.  (+info)

Role of eicosanoids in the pathogenesis of murine cerebral malaria. (4/542)

Because microvascular damage is a common feature of cerebral malaria, we have examined the role eicosanoid metabolites (prostaglandins and leukotrienes) in experimental cerebral malaria. Eighty ICR mice were infected with Plasmodium berghei ANKA, with 40 uninfected mice as controls. Half of the infected mice were treated on days 4 and 5 with aspirin, a prostaglandin synthesis inhibitor. Infected mice started to die of cerebral malaria on day 6, and by day 17, all infected mice died. In contrast, all infected mice treated with aspirin died by day 12. Infected mice had increased phospholipase A2 mRNA expression in the spleen and cyclooxygenase 1 (COX1) and COX2 expression in the brain. At the peak of cerebral malaria, infected mice had higher serum leukotriene B4 levels than control mice, and aspirin-treated infected mice had higher serum leukotriene B4 levels than untreated infected mice. These results suggest that prostaglandins are protective whereas leukotrienes are detrimental in cerebral malaria.  (+info)

Renal involvement in Gambian children with cerebral or mild malaria. (5/542)

Kidney function was studied in 80 Gambian children with cerebral malaria, 73 children with mild malaria, and in 19 children with other febrile illnesses. Serum creatinine was measured, and the excretion in urine of immunoglobulin G, transferrin, albumin and alpha 1 microglobulin was determined. Twenty-five percent of children with cerebral malaria, and 4% of children with mild malaria had an elevated serum creatinine above 62 mumol/l. Increased urinary protein excretion was frequent: 53% of children with cerebral malaria had a glomerulo-tubular pattern of protein excretion, and 46% a tubular pattern. Median albuminuria was 68 mg/l in children with cerebral malaria, 18 mg/l in children with mild malaria, and 9 mg/l in febrile children with other diseases (P < 0.0001). There was no significant association between the proteinuria and height of fever or the degree of parasitaemia, and there was no significant association between death and signs of renal impairment. Renal involvement is common in children with malaria in The Gambia, with prerenal, glomerular, and tubulo-interstitial factors contributing. It is more pronounced in children with cerebral malaria than in those with mild malaria. However, renal dysfunction is relatively mild and does not indicate a worse prognosis.  (+info)

Prevention of cerebral malaria in children in Papua New Guinea by southeast Asian ovalocytosis band 3. (6/542)

Southeast Asian ovalocytosis (SAO) occurs at high frequency in malarious regions of the western Pacific and may afford a survival advantage against malaria. It is caused by a deletion of the erythrocyte membrane band 3 gene and the band 3 protein mediates the cytoadherence of parasitized erythrocytes in vitro. The SAO band 3 variant may prevent cerebral malaria but it exacerbates malaria anemia and may also increase acidosis, a major determinant of mortality in malaria. We undertook a case-control study of children admitted to hospital in a malarious region of Papua New Guinea. The SAO band 3, detected by the polymerase chain reaction, was present in 0 of 68 children with cerebral malaria compared with six (8.8%) of 68 matched community controls (odds ratio = 0, 95% confidence interval = 0-0.85). Median hemoglobin levels were 1.2 g/dl lower in malaria cases with SAO than in controls (P = 0.035) but acidosis was not affected. The remarkable protection that SAO band 3 affords against cerebral malaria may offer a valuable approach to a better understanding of the mechanisms of adherence of parasitized erythrocytes to vascular endothelium, and thus of the pathogenesis of cerebral malaria.  (+info)

T cell response in malaria pathogenesis: selective increase in T cells carrying the TCR V(beta)8 during experimental cerebral malaria. (7/542)

To characterize the T cells involved in the pathogenesis of cerebral malaria (CM) induced by infection with Plasmodium berghei ANKA clone 1.49L (PbA 1.49L), the occurrence of the disease was assessed in mice lacking T cells of either the alphabeta or gammadelta lineage (TCRalphabeta(-/-) or TCRgammadelta(-/-)). TCRgammadelta(-/-) mice were susceptible to CM, whereas all TCRalphabeta(-/-) mice were resistant, suggesting that T cells of the alphabeta lineage are important in the genesis of CM. The repertoire of TCR V(beta) segment gene expression was examined by flow cytometry in B10.D2 mice, a strain highly susceptible to CM induced by infection with PbA 1.49L. In these mice, CM was associated with an increase of T cells bearing the V(beta)8.1, 2 segments in the peripheral blood lymphocytes. Most V(beta)8.1, 2(+) T cells from peripheral blood lymphocytes of the mice that developed CM belonged to the CD8 subset, and exhibited the CD69(+), CD44(high) and CD62L(low) phenotype surface markers. The link between the increase in V(beta)8.1, 2(+) T cells and the neuropathological consequences of PbA infection was strengthened by the observation that the occurrence of CM was significantly reduced in mice treated with KJ16 antibodies against the V(beta)8.1 and V(beta)8.2 chains, and in mice rendered deficient in V(beta)8.1(+) T cells by a mouse mammary tumor virus superantigen.  (+info)

The prognostic and pathophysiologic role of pro- and antiinflammatory cytokines in severe malaria. (8/542)

Pro- and antiinflammatory cytokines were measured on admission in 287 consecutive Vietnamese adults with severe falciparum malaria. Plasma interleukin (IL)-6, IL-10, and tumor necrosis factor (TNF)-alpha concentrations and the IL-6: IL-10 ratio were significantly higher in patients who died than in survivors (P<.001). On multivariate analysis, hyperparasitemia, jaundice, and shock were all associated independently with raised IL-6, IL-10, and interferon-gamma, and acute renal failure specifically with raised TNF-alpha levels. Cerebral malaria patients, particularly those without other vital organ dysfunction, had significantly lower levels of these cytokines (P=.006), reflecting a more localized pathology. Serial IL-6 and IL-10 measurements made on 43 patients who died and matched survivors indicated a relative deficiency in IL-10 production as death approached. Elevated plasma cytokines in severe malaria are associated with systemic pathologic abnormalities, not cerebral involvement. Both the overall magnitude of the cytokine responses and the eventual imbalance between the pro- and antiinflammatory responses are important determinants of mortality.  (+info)