THE ROLE OF SURGERY IN THE TREATMENT OF TRANSPOSITION OF THE GREAT VESSELS. (17/109)

In 28 infants and children with complete transposition of the great vessels, atrial septal defects were created utilizing an open technique with inflow caval occlusion and moderate hypothermia. Of the 12 infants for whom operation was necessary during the first two weeks of life only two survived, suggesting that this technique is not adequate for infants at this age. Only four of the 16 children operated on between the ages of two weeks and three years failed to survive. Two of these died because of pre-existing non-cardiac conditions. Seven children with associated systemic-to-pulmonary shunts survived; the open technique may be preferable in this particular group. Despite the initial improvement afforded by this procedure, three sudden late deaths occurred. For this reason, and because of the danger of early development of pulmonary vascular disease, total operative correction of the malformation should be performed early.  (+info)

Blood organic mercury and dietary mercury intake: National Health and Nutrition Examination Survey, 1999 and 2000. (18/109)

Blood organic mercury (i.e., methyl mercury) concentrations among 1,709 women who were participants in the National Health and Nutrition Examination Survey (NHANES) in 1999 and 2000 (1999-2000 NHANES) were 0.6 microg/L at the 50th percentile and ranged from concentrations that were nondetectable (5th percentile) to 6.7 microg/L (95th percentile). Blood organic/methyl mercury reflects methyl mercury intake from fish and shellfish as determined from a methyl mercury exposure parameter based on 24-hr dietary recall, 30-day food frequency, and mean concentrations of mercury in the fish/shellfish species reported as consumed (multiple correlation coefficient > 0.5). Blood organic/methyl mercury concentrations were lowest among Mexican Americans and highest among participants who designated themselves in the Other racial/ethnic category, which includes Asians, Native Americans, and Pacific Islanders. Blood organic/methyl mercury concentrations were ~1.5 times higher among women 30-49 years of age than among women 16-29 years of age. Blood mercury (BHg) concentrations were seven times higher among women who reported eating nine or more fish and/or shellfish meals within the past 30 days than among women who reported no fish and/or shellfish consumption in the past 30 days. Blood organic/methyl mercury concentrations greater than or equal to 5.8 microg/L were lowest among Mexican Americans (2.0%) and highest among examinees in the Other racial/ethnic category (21.7%). Based on the distribution of BHg concentrations among the adult female participants in 1999-2000 NHANES and the number of U.S. births in 2000, > 300,000 newborns each year in the United States may have been exposed in utero to methyl mercury concentrations higher than those considered to be without increased risk of adverse neurodevelopmental effects associated with methyl mercury exposure.  (+info)

Basigin (CD147) is the target for organomercurial inhibition of monocarboxylate transporter isoforms 1 and 4: the ancillary protein for the insensitive MCT2 is EMBIGIN (gp70). (19/109)

Translocation of monocarboxylate transporters MCT1 and MCT4 to the plasma membrane requires CD147 (basigin) with which they remain tightly associated. However, the importance of CD147 for MCT activity is unclear. MCT1 and MCT4 are both inhibited by the cell-impermeant organomercurial reagent p-chloromercuribenzene sulfonate (pCMBS). Here we demonstrate by site-directed mutagenesis that removal of all accessible cysteine residues on MCT4 does not prevent this inhibition. pCMBS treatment of cells abolished co-immunoprecipitation of MCT1 and MCT4 with CD147 and enhanced labeling of CD147 with a biotinylated-thiol reagent. This suggested that CD147 might be the target of pCMBS, and further evidence for this was obtained by treatment of cells with the bifunctional organomercurial reagent fluorescein dimercury acetate that caused oligomerization of CD147. Site-directed mutagenesis of CD147 implicated the disulfide bridge in the Ig-like C2 domain of CD147 as the target of pCMBS attack. MCT2, which is pCMBS-insensitive, was found to co-immunoprecipitate with gp70 rather than CD147. The interaction between gp70 and MCT2 was confirmed using fluorescence resonance energy transfer between the cyan fluorescent protein- and yellow fluorescent protein-tagged MCT2 and gp70. pCMBS strongly inhibited lactate transport into rabbit erythrocytes, where MCT1 interacts with CD147, but not into rat erythrocytes where it interacts with gp70. These data imply that inhibition of MCT1 and MCT4 activity by pCMBS is mediated through its binding to CD147, whereas MCT2, which associates with gp70, is insensitive to pCMBS. We conclude that ancillary proteins are required to maintain the catalytic activity of MCTs as well as for their translocation to the plasma membrane.  (+info)

Inter-individual variations of human mercury exposure biomarkers: a cross-sectional assessment. (20/109)

BACKGROUND: Biomarkers for mercury (Hg) exposure have frequently been used to assess exposure and risk in various groups of the general population. We have evaluated the most frequently used biomarkers and the physiology on which they are based, to explore the inter-individual variations and their suitability for exposure assessment. METHODS: Concentrations of total Hg (THg), inorganic Hg (IHg) and organic Hg (OHg, assumed to be methylmercury; MeHg) were determined in whole blood, red blood cells, plasma, hair and urine from Swedish men and women. An automated multiple injection cold vapour atomic fluorescence spectrophotometry analytical system for Hg analysis was developed, which provided high sensitivity, accuracy, and precision. The distribution of the various mercury forms in the different biological media was explored. RESULTS: About 90% of the mercury found in the red blood cells was in the form of MeHg with small inter-individual variations, and part of the IHg found in the red blood cells could be attributed to demethylated MeHg. THg in plasma was associated with both IHg and MeHg, with large inter-individual variations in the distribution between red blood cells and plasma. THg in hair reflects MeHg exposure at all exposure levels, and not IHg exposure. The small fraction of IHg in hair is most probably emanating from demethylated MeHg. The inter-individual variation in the blood to hair ratio was very large. The variability seemed to decrease with increasing OHg in blood, most probably due to more frequent fish consumption and thereby blood concentrations approaching steady state. THg in urine reflected IHg exposure, also at very low IHg exposure levels. CONCLUSION: The use of THg concentration in whole blood as a proxy for MeHg exposure will give rise to an overestimation of the MeHg exposure depending on the degree of IHg exposure, why speciation of mercury forms is needed. THg in RBC and hair are suitable proxies for MeHg exposure. Using THg concentration in plasma as a measure of IHg exposure can lead to significant exposure misclassification. THg in urine is a suitable proxy for IHg exposure.  (+info)

Existence of an iron-oxidizing bacterium Acidithiobacillus ferrooxidans resistant to organomercurial compounds. (21/109)

Acidithiobacillus ferrooxidans MON-1 which is highly resistant to Hg2+ could grow in a ferrous sulfate medium (pH 2.5) with 0.1 microM p-chloromercuribenzoic acid (PCMB) with a lag time of 2 d. In contrast, A. ferrooxidans AP19-3 which is sensitive to Hg2+ did not grow in the medium. Nine strains of A. ferrooxidans, including seven strains of the American Type Culture Collection grew in the medium with a lag time ranging from 5 to 12 d. The resting cells of MON-1, which has NADPH-dependent mercuric reductase activity, could volatilize Hg0 when incubated in acidic water (pH 3.0) containing 0.1 microM PCMB. However, the resting cells of AP19-3, which has a similar level of NADPH-dependent mercuric reductase activity compared with MON-1, did not volatilize Hg0 from the reaction mixture with 0.1 microM PCMB. The activity level of the 11 strains of A. ferrooxidans to volatilize Hg0 from PCMB corresponded well with the level of growth inhibition by PCMB observed in the growth experiments. The resting cells of MON-1 volatilized Hg0 from phenylmercury acetate (PMA) and methylmercury chloride (MMC) as well as PCMB. The cytosol prepared from MON-1 could volatilize Hg0 from PCMB (0.015 nmol mg(-1) h(-1)), PMA (0.33 nmol mg(-1) h(-1)) and MMC (0.005 nmol mg(-1) h(-1)) in the presence of NADPH and beta-mercaptoethanol.  (+info)

A new mercury-penicillin V derivative as a probe for ultrastructural localization of penicillin-binding proteins in Escherichia coli. (22/109)

The precise ultrastructural localization of penicillin-binding protein (PBP)-antibiotic complexes in Escherichia coli JM101, JM101 (pBS96), and JM101(pPH116) was investigated by high-resolution electron microscopy. We used mercury-penicillin V (Hg-pen V) as a heavy-metal-labeled, electron-dense probe for accurately localizing PBPs in situ in single bacterial cells grown to exponential growth phase. Biochemical data derived from susceptibility tests and bacteriolysis experiments revealed no significant differences between Hg-pen V and the parent compound, penicillin V, or between strains. Both antibiotics revealed differences in the binding affinities for PBPs of all strains. Deacylation rates for PBPs were slow despite the relatively low binding affinities of antibiotics. Cells bound most of the Hg-pen V added to cultures, and the antibiotic-PBP complex could readily be seen by electron microscopy of unstained whole mounts as distinct, randomly situated electron-dense particles. Fifty to 60% of the antibiotic was retained by cells during processing for conventional embedding so that thin sections could also be examined. These revealed similar electron-dense particles located predominantly on the plasma membrane and less frequently in the cytoplasm. Particles positioned on the plasma membranes were occasionally shown to protrude into the periplasmic space, thereby reflecting the high resolution of the Hg-pen V probe. Moreover, some particles were observed free in the periplasm, suggesting, for the first time, that a proportion of PBPs may not be restricted to the plasma membrane but may be tightly associated with the peptidoglycan for higher efficiency of peptidoglycan assembly. All controls were devoid of the electron-dense particles. The presence of electron-dense particles in cells of the wild-type JM101, demonstrated that our probe could identify PBPs in naturally occurring strains without inducing PBP overproduction.  (+info)

Spectrophotometric determination of uric acid based on fading of o-hydroxyhydroquinonephthalein-palladium(II)-hexadecyltrimethyl-ammonium complex. (23/109)

A simple and highly sensitive spectrophotometric method for the determination of uric acid (UA) was established based on fading of the o-hydroxyhydroquinonephthalein-palladium(II)-hexadecyltrimethylammonium complex. In the determination of UA, Beer's law is obeyed in the range of 0.01-0.20 microg ml(-1), with an effective molar absorptivity at 635 nm, the relative standard deviation being 6.5 x 10(5) dm(3) mol(-1) cm(-1) and 1.5% (n = 5). This method is about 20-times more sensitive than the conventional methods. The method was successfully applied to the assay of UA in human urine.  (+info)

Cleaving mercury-alkyl bonds: a functional model for mercury detoxification by MerB. (24/109)

The extreme toxicity of organomercury compounds that are found in the environment has focused attention on the mechanisms of action of bacterial remediating enzymes. We describe facile room-temperature protolytic cleavage by a thiol of the Hg-C bond in mercury-alkyl compounds that emulate the structure and function of the organomercurial lyase MerB. Specifically, the tris(2-mercapto-1-t-butylimidazolyl)hydroborato ligand [Tm(Bu(t))], which features three sulfur donors, has been used to synthesize [Tm(Bu(t))]HgR alkyl compounds (R = methyl or ethyl) that react with phenylthiol (PhSH) to yield [Tm(Bu(t))]HgSPh and RH. Although [Tm(Bu(t))]HgR compounds exist as linear two-coordinate complexes in the solid state, 1H nuclear magnetic resonance spectroscopy indicates that the complexes exist in rapid equilibrium with their higher-coordinate [kappa2-Tm(Bu(t))]HgR and [kappa3-Tm(Bu(t))]HgR isomers in solution. Facile access to a higher-coordinate species is proposed to account for the exceptional reactivity of [Tm(Bu(t))]HgR relative to that of other two-coordinate mercury-alkyl compounds.  (+info)