Regulatory effects of Th1-type (IFN-gamma, IL-12) and Th2-type cytokines (IL-10, IL-13) on parasite-specific cellular responsiveness in Onchocerca volvulus-infected humans and exposed endemic controls. (9/208)

The present study investigated in vitro the regulatory effects of T helper 1 (Th1)-type (interferon-gamma, IFN-gamma; interleukin-12, IL-12) and Th2-type cytokines (IL-10, IL-13) on Onchocerca volvulus-specific cellular reactivity in onchocerciasis patients, and in exposed endemic control individuals presenting no clinical and parasitological signs of disease. In both patients and controls, addition of IL-10 dose-dependently depressed O. volvulus antigen (OvAg)-specific cellular proliferation, and peripheral blood mononuclear cells (PBMC) from patients who were more sensitive to the suppressive effect of IL-10 than those from endemic controls. However, neutralization of IL-10 by specific antibody did not reverse cellular hyporesponsiveness. In contrast to the inhibitory effects of IL-10, exogenous IL-12 and IL-13 augmented PBMC proliferative responses to OvAg both in patients and controls (P<0. 01) and neutralizing of IL-12 or IL-13 significantly decreased OvAg-specific proliferation in both groups. Exogenous IFN-gamma did not activate OvAg-specific proliferative responses in patients, but anti-IFN-gamma antibodies abolished cellular reactivity to OvAg. Antibody to IL-10 increased (P<0.05) OvAg-specific production of IL-5, IL-12 and IFN-gamma, and inversely, anti-IFN-gamma enhanced IL-10 (in patients only) and IL-5 and IL-13 in both patients and controls. Neutralization of IL-12 activated OvAg-specific production of IL-10, IL-2 and IFN-gamma. In conclusion, despite of an overproduction of IL-10, which suppressed cellular reactivity in patients and control individuals, OvAg-specific cellular responses were activated in vitro by exogenous supplementation with IL-12 and IL-13, and cytokine neutralization experiments confirmed that distinct type 1 and type 2 T helper cytokines cross-regulate expression and magnitude of O. volvulus-specific cellular responsiveness in humans.  (+info)

Onchocerciasis modulates the immune response to mycobacterial antigens. (10/208)

Chronic helminth infection induces a type-2 cellular immune response. In contrast to this, mycobacterial infections commonly induce a type-1 immune response which is considered protective. Type-2 responses and diminished type-1 responses to mycobacteria have been previously correlated with active infection states such as pulmonary tuberculosis and lepromatous leprosy. The present study examines the immune responses of children exposed to both the helminth parasite Onchocerca volvulus and the mycobacterial infections, Mycobacterium tuberculosis and M. leprae. Proliferation of peripheral blood mononuclear cells (PBMC) and production of IL-4 in response to both helminth and mycobacterial antigen (PPD) decreased dramatically with increasing microfilarial (MF) density. Although interferon-gamma (IFN-gamma) production strongly correlated with cellular proliferation, it was surprisingly not related to MF density for either antigen. IL-4 production in response to helminth antigen and PPD increased with ascending children's age. IFN-gamma and cellular proliferation to PPD were not related to age, but in response to helminth antigen were significantly higher in children of age 9-12 years than children of either the younger age group (5-8 years) or the older group (13-16 years). Thus, there was a MF density-related down-regulation of cellular responsiveness and age-related skewing toward type 2 which was paralleled in response to both the helminth antigen and PPD. This parasite-induced immunomodulation of the response to mycobacteria correlates with a previous report of doubled incidence of lepromatous leprosy in onchocerciasis hyperendemic regions. Moreover, this demonstration that helminth infection in humans can modulate the immune response to a concurrent infection or immunological challenge is of critical importance to future vaccination strategies.  (+info)

Eotaxin expression in Onchocerca volvulus-induced dermatitis after topical application of diethylcarbamazine. (11/208)

In persons with onchocerciasis, topical application of the anthelminthic diethylcarbamazine (DEC) induces clinical and histologic responses similar to acute papular onchodermatitis, including recruitment of eosinophils to the skin. To determine whether the eosinophil chemokine eotaxin is likely to be associated with eosinophil recruitment in onchodermatitis, DEC was applied to a 5-cm2 area on the skin of infected persons, and biopsies were taken from lesions 24 h later. Histologic analysis showed elevated dermal and epidermal eosinophils compared with tissue from an adjacent (untreated) site. Reverse transcription-polymerase chain reaction showed that eotaxin gene expression in DEC-treated skin was elevated 2- to 17-fold compared with control tissue. Eotaxin immunoreactivity was noted in mononuclear cells and eosinophils in the perivascular region of the dermis and in lymphatic and vascular endothelial cells. Together, these observations are consistent with a role for eotaxin in recruitment of eosinophils to the dermis in early stage onchocercal skin disease.  (+info)

An essential role for antibody in neutrophil and eosinophil recruitment to the cornea: B cell-deficient (microMT) mice fail to develop Th2-dependent, helminth-mediated keratitis. (12/208)

Invasion of the corneal stroma by neutrophils and eosinophils and subsequent degranulation disrupts corneal clarity and can result in permanent loss of vision. In the current study, we used a model of helminth-induced inflammation to demonstrate a novel role for Ab in mediating recruitment of these inflammatory cells to the central cornea. C57BL/6 and B cell-deficient (microMT) mice were immunized s. c. and injected intrastromally with Ags from the parasitic helminth Onchocerca volvulus (which causes river blindness). C57BL/6 mice developed pronounced corneal opacification, which was associated with an Ag-specific IL-5 response and peripheral eosinophilia, temporal recruitment of neutrophils and eosinophils from the limbal vessels to the peripheral cornea and subsequent migration to the central cornea. In contrast, the corneas of microMT mice failed to develop keratitis after intrastromal injection of parasite Ags unless Ags were injected with immune sera. Eosinophils were recruited from the limbal vessels to the peripheral cornea in microMT mice, but failed to migrate to the central cornea, whereas neutrophil recruitment was impaired at both stages. With the exception of IL-5, T cell responses and peripheral eosinophils were not significantly different between C57BL/6 and microMT mice. Taken together, these findings not only demonstrate that Ab is required for the development of keratitis, but also show that recruitment of neutrophils to the cornea is Ab-dependent, whereas eosinophil migration is only partially dependent upon Ab interactions.  (+info)

Comparative analysis of glycosylated and nonglycosylated filarial homologues of the 20-kilodalton retinol binding protein from Onchocerca volvulus (Ov20). (13/208)

Ov20 is a structurally novel 20-kDa retinol binding protein secreted by Onchocerca volvulus. Immunological and biological investigation of this protein has been hampered by the inability to maintain O. volvulus in a laboratory setting. In an effort to find a system more amenable to laboratory investigation, we have cloned, sequenced, and expressed cDNA encoding homologues of Ov20 from two closely related filarial species, Brugia malayi (Bm20) and Acanthocheilonema viteae (Av20). Sequence comparisons have highlighted differences in glycosylation of the homologues. We present here an analysis of mouse immune responses to Ov20, Bm20, and Av20. The results suggest a strong genetic restriction in response to native Bm20 that is overcome when recombinant, nonnative material is used. Reactivity of human filarial sera to the three recombinant proteins confirmed previous specificity studies with Ov20 but highlighted important differences in the reactivity patterns of the O. volvulus and B. malayi homologues that may be due to differences in glycosylation patterns. Ov20 is a dominant antigen in infected individuals, while Bm20 is not. The availability of the B. malayi homologue enabled us to use defined murine reagents and inbred strains for genetic analysis of responsiveness in a way that is not possible for Ov20. However, the close sequence similarity between Ov20 and Av20 suggests that the A. viteae model may be more suited to the investigation of the biological functions of Ov20.  (+info)

The Simulium damnosum complex in western Uganda and its role as a vector of Onchocerca volvulus. (14/208)

The status of onchocerciasis vectors in the former Ruwenzori focus in western Uganda was re-examined some 15 years after control measures against Simulium damnosum s.l. were suspended. The four cytoforms S. kilibanum, 'Sebwe', 'Nkusi' and S. pandanophilum were found. While the nonanthropophilic 'Sebwe' was still widely distributed in rivers north, east and south of the Ruwenzori, the only anthropophilic species and vector, S. kilibanum, had disappeared from most of its former habitats and was now restricted to two limited foci, where high biting densities were encountered. It was still a vector south of the Ruwenzori (Kasese focus), where 15.4% of the parous flies were infected with larval stages of Onchocerca volvulus and 34 infective larvae were found in the heads of 1000 parous flies. In the second focus along the Mahoma and Nsonge rivers, a chromosomally highly polymorphic population of S. kilibanum had replaced the former vector S. neavei, but does not act as a vector. Only 2.3% of the parous females were infected and just 1 infective larva was found in the heads of 1000 parous flies.  (+info)

Immunity to onchocerciasis: cells from putatively immune individuals produce enhanced levels of interleukin-5, gamma interferon, and granulocyte-macrophage colony-stimulating factor in response to Onchocerca volvulus larval and male worm antigens. (15/208)

Antigen-specific interleukin-5 (IL-5), gamma interferon (IFN-gamma), and granulocyte-macrophage colony-stimulating factor (GM-CSF) responses in individuals living in an area of hyperendemicity for onchocerciasis in Cameroon were examined. The responses against antigens prepared from Onchocerca volvulus third-stage larvae (L3), molting L3 (mL3), and crude extract from adult males (M-OvAg) were compared to the responses against antigens from adult female worms and skin microfilariae. Cytokine responses for the putatively immune individuals (PI) and the infected individuals (INF) were compared. A differential cytokine profile of IL-5 (Th2 phenotype) and IFN-gamma (Th1 phenotype) was found in these individuals in response to the antigens. In both the PI and the INF, Th2 responses against all the antigens tested were dominant. However, in the PI group as a whole, there was an enhanced Th2 response against the larval antigens and the adult male and adult female antigens, and a Th1 response in a subgroup of the PI (27 to 54.5%) against L3, mL3, and M-OvAg antigens was present. While the PI produced significantly higher levels of GM-CSF against L3, mL3, and M-OvAg antigens than the INF, there was no difference in the GM-CSF responses of the groups against the other antigens. The present study indicated that, in comparison to the INF, the PI have distinct larva-specific and adult male-specific cytokine responses, thus supporting the premise that immunological studies of the PI would lead to the identification of immune mechanisms and the target genes that play a role in protective immunity.  (+info)

Antigen-specific cellular hyporesponsiveness in a chronic human helminth infection is mediated by T(h)3/T(r)1-type cytokines IL-10 and transforming growth factor-beta but not by a T(h)1 to T(h)2 shift. (16/208)

Exposure to infective larvae of the filarial nematode Onchocerca volvulus (Ov) either results in patent infection (microfilaridermia) or it leads to a status called putative immunity, characterized by resistance to infection. Similar to other chronic helminth infections, there is a T cell proliferative hyporesponsiveness to Ov antigen (OvAg) by peripheral blood mononuclear cells (PBMC) from individuals with patent infection, i.e. generalized onchocerciasis (GEO), compared to PBMC from putatively immune (PI) individuals. In this study, mechanisms mediating this cellular hyporesponsiveness in GEO were investigated: the low proliferative response in PBMC from GEO individuals was associated with a lack of IL-4 production and significantly lower production of IL-5 compared to those from PI individuals, arguing against a general shift towards a T(h)2 response being the cause of hyporesponsiveness. In contrast, IL-10 and transforming growth factor (TGF)-beta, two cytokines associated with a T(h)3 response, seemed to mediate hyporesponsiveness: PBMC from individuals with GEO produced significantly more IL-10, and T cell proliferative hyporesponsiveness in this group could be reversed by the addition of anti-IL-10 and anti-TGF-beta antibodies. Hyporesponsiveness was specific for OvAg and not observed upon stimulation with related nematode antigens, arguing for a T cell-mediated, Ov-specific down-regulation. Ov-specific T cells could be cloned from GEO PBMC which have a unique cytokine profile (no IL-2 but high IL-10 and/or TGF-beta production), similar to the T cell subsets known to suppress ongoing inflammation (T(h)3 and T(r)1), indicating that this cell type which has not been found so far in infectious diseases may be involved in maintaining Ov-specific hyporesponsiveness.  (+info)