Odor distinctiveness between enantiomers of linalool: difference in perception and responses elicited by sensory test and forehead surface potential wave measurement. (57/2509)

The effects on humans of inhalation of optically active linalools were examined in terms of sensory tests and portable forehead surface electroencephalographic (IBVA-EEG) measurements in order to assess their odor distinctiveness by chiral isomers. (R)-(-)-Linalools with specific rotation of [alpha](D) = -15.1 degrees were isolated by repeated flash column chromatography from lavender oil, while (S)-(+)-linalools with [alpha](D) = +17.4 degrees and (RS)-(+/-)-linalools with [alpha](D) = 0 degrees and content of (R)-form 50.9% and (S)-form 49.1% were obtained from coriander oil and commercial linalool, respectively, by using the same method. With the use of an inhalator, each was administered to subjects both before and after 10 min of work. It was found that administration after work evoked different subjective impressions when compared with that before work depending on the configuration of the isomers and the type of work employed. For instance, inhalation of (R)-(-)-linalool after hearing environmental sounds not only produced a much more favorable impression in the sensory test but was also accompanied by a greater decrease in beta waves after work in comparison with that before work. This is in contrast to the case of mental work, which resulted in a tendency for agitation accompanied by an increase in beta waves. These findings led us to conclude that enantiomeric stereospecificity of linalool evoked different odor perception and responses not only with chiral dependence but also with task dependence. In addition, in comparing these sensory profiling features and IBVA-EEG tendencies between hearing environmental sound and mental work, a tendency was observed for (R)-(-)-linalool to coincide with (RS)-(+/-)-linalool but not with (S)-(+)-linalool.  (+info)

Relationships between odor-elicited oscillations in the salamander olfactory epithelium and olfactory bulb. (58/2509)

Oscillations in neuronal population activity, or the synchronous neuronal spiking that underlies them, are thought to play a functional role in sensory processing in the CNS. In the olfactory system, stimulus-induced oscillations are observed both in central processing areas and in the peripheral receptor epithelium. To examine the relationship between these peripheral and central oscillations, we recorded local field potentials simultaneously from the olfactory epithelium and olfactory bulb in tiger salamanders (Ambystoma tigrinum). Stimulus-induced oscillations recorded at these two sites were matched in frequency and slowed concurrently over the time course of the response, suggesting that the oscillations share a common source or are modulated together. Both the power and duration of oscillations increased over a range of amyl acetate concentrations from 2.5 x 10(-2) to 1 x 10(-1) dilution of saturated vapor, but peak frequency was not affected. The frequency of the oscillation did vary with different odorant compounds in both olfactory epithelium and bulb (OE and OB): amyl acetate, ethyl fenchol and d-carvone elicited oscillations of significantly different frequencies, and there was no difference in OE and OB oscillation frequencies. No change in the power or frequency of OE oscillations was observed after sectioning the olfactory nerve, indicating that the OE oscillations have a peripheral source. Finally, application of 1.0 and 10 microM tetrodotoxin to the epithelium blocked OE oscillations in a dose-dependent and reversible manner, suggesting that peripheral olfactory oscillations are related to receptor neuron spiking.  (+info)

Smell and taste disorders: a primary care approach. (59/2509)

Smell and taste disorders are common in the general population, with loss of smell occurring more frequently. Although these disorders can have a substantial impact on quality of life and may represent significant underlying disease, they are often overlooked by the medical community. Patients may have difficulty recognizing smell versus taste dysfunction and frequently confuse the concepts of "flavor" and "taste." While the most common causes of smell disturbance are nasal and sinus disease, upper respiratory infection and head trauma, frequent causes of taste disturbance include oral infections, oral appliances (e.g., dentures), dental procedures and Bell's palsy. Medications can interfere with smell and taste, and should be reviewed in all patients with reported dysfunction. In addition, advancing age has been associated with a natural impairment of smell and taste ability. A focused history and a physical examination of the nose and mouth are usually sufficient to screen for underlying pathology. Computed tomographic scanning or magnetic resonance imaging of affected areas, as well as commercially available standardized tests, may be useful in selected patients. The causes of olfactory dysfunction that are most amenable to treatment include obstructing polyps or other masses (treated by excision) and inflammation (treated with steroids). Enhancement of food flavor and appearance can improve quality of life in patients with irreversible dysfunction.  (+info)

Importance of newly generated neurons in the adult olfactory bulb for odor discrimination. (60/2509)

In adult rodents, neurons are continually generated in the subventricular zone of the forebrain, from where they migrate tangentially toward the olfactory bulb, the only known target for these neuronal precursors. Within the main olfactory bulb, they ascend radially into the granule and periglomerular cell layers, where they differentiate mainly into local interneurons. The functional consequences of this permanent generation and integration of new neurons into existing circuits are unknown. To address this question, we used neural cell adhesion molecule-deficient mice that have documented deficits in the migration of olfactory-bulb neuron precursors, leading to about 40% size reduction of this structure. Our anatomical study reveals that this reduction is restricted to the granule cell layer, a structure that contains exclusively gamma-aminobutyric acid (GABA)ergic interneurons. Furthermore, mutant mice were subjected to experiments designed to examine the behavioral consequences of such anatomical alteration. We found that the specific reduction in the newly generated interneuron population resulted in an impairment of discrimination between odors. In contrast, both the detection thresholds for odors and short-term olfactory memory were unaltered, demonstrating that a critical number of bulbar granule cells is crucial only for odor discrimination but not for general olfactory functions.  (+info)

A descriptive and comparative lectin histochemical study of the vomeronasal system in pigs and sheep. (61/2509)

The accessory olfactory bulb (AOB) is the primary target of the sensory epithelium of the vomeronasal organ (VNO), and thus constitutes a fundamental component of the accessory olfactory system, which is involved in responses to behaviour-related olfactory stimuli. In this study we investigated the characteristics of the AOB, VNO, vomeronasal nerves (VNNs) and caudal nasal nerve (CdNN) in pigs and sheep, species in which olfaction plays a key behavioural role both in the neonatal period and in adulthood. The patterns of staining of the AOB by the Bandeiraea simplicifolia and Lycopersicon esculentum lectins were the same in the 2 species, whereas the Ulex europeus and Dolichos biflorus lectins gave different patterns. In both species, lectin staining of the AOB was consistent with that of the VNNs, while the CdNN did not label any of the structures studied. The entire sensory epithelium of the pig was labelled by Ulex europeus and Lycopersicum esculentum lectins, and all 4 lectins used labelled the mucomicrovillar surface of the sensory epithelium in sheep.  (+info)

Peripheral odor coding in the rat and frog: quality and intensity specification. (62/2509)

In mammals, two recent studies have shown recently that one odor molecule can be recognized by several molecular olfactory receptors (ORs), and a single OR can recognize multiple odor molecules. In addition, one olfactory receptor neuron (ORN) may respond to different stimuli chosen as representative of distinct odor qualities. The aim of the present study was to analyze quality and intensity coding abilities of rat single ORNs, comparing them with previous extensive data gathered in the frog to get insight into the generality of olfactory coding mechanisms over vertebrates. Response properties of 90 rat ORNs to different odors or to one odor at different concentrations were analyzed. In the rat and the frog, odor quality appears to be specified through the identity of activated ORNs. However, rat ORNs have higher response thresholds. This lower sensitivity may be interpreted as an increase in selectivity of rat ORNs for low or medium odor intensities. In these conditions, the lower proportion of activated ORNs could be counterbalanced by their number, as well as by their higher glomerular convergence ratio in the olfactory bulb. From amphibians to mammals, the olfactory system appears to use universal mechanisms based on a combinatorial-coding mode that may allow quasi-infinite possibilities of adaptation to various olfactory environments.  (+info)

Response characteristics of an identified, sexually dimorphic olfactory glomerulus. (63/2509)

Partitioning of synaptic neuropil into glomeruli is a common feature of primary olfactory centers in most animal species. The functional significance of glomeruli, however, is not yet well understood. The present study is part of our effort to test the hypothesis that each glomerulus is a functional unit dedicated to processing information about a particular odorant or attribute of odor molecules and that the glomerular array constitutes a map of "odor space." We investigated the physiological and morphological features of uniglomerular projection neurons (PNs) associated with an identified glomerulus in each antennal lobe of the female sphinx moth, Manduca sexta. This "lateral large female glomerulus" (latLFG) is sexually dimorphic and therefore may play a female-specific role, such as processing of information about one or more odorants important for orientation of a female to host plants for oviposition. Together with the medial LFG (medLFG), the latLFG resides outside the array of spheroidal ordinary glomeruli, near the entrance of the antennal (olfactory) nerve. Each LFG is innervated by four to five PNs. Using intracellular recording and staining, we examined the responses of latLFG-PNs to odorants that represent major classes of volatiles released by host plants of M. sexta. All latLFG-PNs were excited when the ipsilateral antenna was stimulated with low concentrations of the monoterpenoid linalool. Dose-response analysis showed that neither other monoterpenoids nor representatives of other classes of host plant volatiles were similarly stimulatory to latLFG-PNs. These findings are consistent with the idea that each glomerulus has a characteristic, limited molecular receptive range.  (+info)

Sensory preconditioning in honeybees. (64/2509)

Sensory preconditioning means that reinforcement of stimulus A after unreinforced exposure to a compound AB also leads to responses to stimulus B. Here, we describe and analyze sensory preconditioning in an insect, the honeybee Apis mellifera. Using two-element odorant compounds in classical conditioning of the proboscis extension reflex, we found (i) that sensory preconditioning is not due to stimulus generalization, (ii) that paired, but not unpaired, presentation of elements supports sensory preconditioning, (iii) that simultaneous, but not sequential, exposure to the elements of the compound supports sensory preconditioning and (iv) that a single presentation of the compound yields maximal sensory preconditioning. The results are discussed with respect to configural and chain-like associative explanations for sensory preconditioning. We suggest an experience-dependent step of compound processing, establishing configural units, as an additional explanation for sensory preconditioning.  (+info)