Role of p53-dependent activation of caspases in chronic obstructive uropathy: evidence from p53 null mutant mice. (57/693)

Chronic obstructive uropathy (COU) created by unilateral ureteric ligation is associated with increased renal cell apoptosis and p53 expression. Genetically engineered mice were used to examine the role of p53 in renal cell apoptosis in COU and the involved molecular pathways. Obstructed kidneys in p53+/+, p53+/-, and p53-/- mice were examined at days 4, 7, 15, 20, and 30 for apoptosis, and mRNA were examined for p53, members of the bcl-2 family, the death receptor family, and the common effectors of apoptosis. Obstructed kidneys in p53+/- and p53-/- mice exhibited equal attenuation of tubular and interstitial cell apoptosis (70 and 50%, respectively), compared with p53+/+ mice. However, p53 gene deficiency did not confer complete protection from apoptosis. Obstructed kidneys from p53-/- mice did not express p53 mRNA, whereas those from p53+/- and p53+/+ mice displayed mild and marked increase in their expression, respectively. Obstructed kidneys in p53+/+, p53+/-, and p53-/- mice displayed upregulation of mRNA for members of the bcl-2 family and most of the death receptor family, except for a lower level of tumor necrosis factor receptor-1, TRAIL, and FAP in p53+/+ mice. Obstructed kidneys in p53-/- and p53+/- mice showed virtual absence of caspase 11 and marked attenuation of caspases 1 and 12, contrasted with their strong expression in p53+/+ kidneys. These data suggest that apoptosis in obstructed kidneys involves p53-dependent as well as p53-independent pathways. The p53-dependent pathway may involve activation of caspases 1, 11, and 12, whereas the p53-independent pathway may involve activation of members of the bcl-2 and death receptor families.  (+info)

Obstructive nephropathy in the mouse: progressive fibrosis correlates with tubulointerstitial chemokine expression and accumulation of CC chemokine receptor 2- and 5-positive leukocytes. (58/693)

The infiltration of leukocytes plays a major role in mediating tubulointerstitial inflammation and fibrosis in chronic renal disease. CC chemokines participate in leukocyte migration and infiltration into inflamed renal tissue. Because CC chemokine-directed leukocyte migration is mediated by target cell expression of a group of CC chemokine receptors, this study examined the expression of CC chemokines and their receptors during initiation of tubulointerstitial fibrosis after unilateral ureteral obstruction in C57BL/6 mice. Obstructed kidneys developed hydronephrosis, tubular cell damage, interstitial inflammation, and fibrosis. From days 2 to 10, a progressive interstitial influx of F4/80+ macrophages and CD3+ lymphocytes occurred (macrophages, 4-fold; lymphocytes, 20-fold at day 10, compared with contralateral control kidneys). In parallel, the number of activated fibroblast-specific protein 1+ fibroblasts and interstitial collagen IV accumulation increased from days 2 to 10. The mRNA expression of CC chemokines (predominantly monocyte chemoattractant protein-1 [MCP-1]/CCL2, RANTES/CCL5) and their receptors CCR1, CCR2, CCR5 increased progressively from days 2 to 10. By in situ hybridization, a prominent interstitial mRNA expression of MCP-1 and RANTES and their receptors CCR2 and CCR5 localized to interstitial mononuclear cell infiltrates. MCP-1 and RANTES expression was also seen in tubular epithelial cells. Fluorescence-activated cell sorter analysis of single-cell suspensions from obstructed kidneys revealed a prominent expression of CCR2 and CCR5 by infiltrating macrophages, whereas most lymphocytes expressed CCR5 only. These data demonstrate an increased expression of MCP-1/CCL2 and RANTES/CCL5 at sites of tubulointerstitial damage and progressive fibrosis during unilateral ureteral obstruction that correlates with simultaneous accumulation of interstitial macrophages and T lymphocytes expressing the respective surface receptors CCR2 and CCR5. The chemokine receptor-mediated leukocyte influx into the tubulointerstitium could offer a new potential target for therapeutic intervention in progressive renal tubulointerstitial fibrosis.  (+info)

Scintigraphy and Doppler ultrasonography for the evaluation of obstructive urinary calculi. (59/693)

Forty-seven patients with unilateral obstructive calculi (12 males and 35 females) were submitted to 99mTc-diethylene triamine pentaacetic acid (DTPA) or 99mTc-dimercaptosuccinic acid (DMSA) scans for assessment of renal function. The scans revealed unilateral functional deficit in 68 and 66% of the patients, respectively. A calculus size of 1.1 to 2.0 cm was significantly associated with deficit detected by DTPA, but duration of obstruction and calculus localization were not. After relief of the obstruction, the mean percent renal function of the affected kidney was found to be significantly increased from 25 +/- 12% to 29 +/- 12% in DTPA and from 21 +/- 15% to 24 +/- 12% in DMSA. Initial Doppler ultrasonography performed in 35 patients detected an increased resistive index in 10 (29%). In the remaining patients with a normal resistive index, ureteral urinary jet was observed, indicating partial obstruction. The high frequency of renal function impairment detected by DTPA and of tubulointerstitial damage detected by DMSA as well as the slight amelioration of unilateral renal function after relief of obstruction suggest that scintigraphy assessment may help evaluate the unilateral percentage of renal function and monitor renal function recovery when it occurs. The presence of a urinary jet detected by Doppler ultrasonography further indicates the severity of obstruction and the recovery prognosis.  (+info)

Fluvastatin suppresses oxidative stress and fibrosis in the interstitium of mouse kidneys with unilateral ureteral obstruction. (60/693)

BACKGROUND: Recently, we demonstrated increased oxidative stress in the interstitium of ureteral obstructed kidneys based on the increased expression of heme oxygenase-1 and immunohistochemical detection of advanced glycation end products (AGE) in the interstitium. Antioxidant therapy may have a therapeutic potential toward interstitial fibrosis of unilateral ureteral obstruction (UUO) kidneys. Fluvastatin is an HMG-CoA reductase inhibitor and has been demonstrated to have an antioxidant activity in vitro. METHODS: The effects of fluvastatin on UUO kidneys from the viewpoints of antioxidant action in vivo and antifibrosis action were studied. To investigate the antioxidant action and its therapeutic efficacy of fluvastatin in UUO kidneys, AGE accumulation and fibrosis in the obstructed kidneys was compared among vehicle-, pravastatin-, or fluvastatin-treated (10 or 40 mg/kg/day) groups. RESULTS: Tubulointerstitial fibrosis was significantly attenuated in fluvastatin-treated animals. Fluvastatin significantly suppressed the degree of immunostaining of AGE in UUO kidneys. CONCLUSIONS: These results provide evidence for the antioxidant action of fluvastatin in vivo. The decreased interstitial fibrosis along with a decreased oxidative stress marker in the interstitial lesion strongly suggests the existence of a causal relationship between them. Fluvastatin may have therapeutic value in slowing or preventing interstitial fibrosis in progressive renal disease.  (+info)

Renal apoptosis parallels ceramide content after prolonged ureteral obstruction in the neonatal rat. (61/693)

Obstructive nephropathy, the primary cause of renal insufficiency in infants, is characterized by progressive renal apoptosis. Ceramide is a sphingolipid known to stimulate apoptosis in the kidney. We investigated the effects of unilateral ureteral obstruction (UUO) on endogenous renal ceramide content and apoptosis in neonatal and adult rats. Animals were subjected to UUO or sham operation on the first day of life and were studied 3-28 days later. Adult rats were similarly treated and then studied 3 or 14 days later. In additional neonatal rats, the obstruction was removed after 5 days, with study at 14 or 28 days. Renal ceramide content was measured by diacylglycerol kinase assay, and apoptosis was determined by the terminal deoxynucleotidyl transferase dUTP nick-end-labeling technique. Renal ceramide content was 50-fold higher in the 3-day neonatal compared with the adult kidney and 10-fold higher in the 7-day neonatal compared with the adult kidney, but there was no additional effect of UUO on ceramide content at these ages. However, after 14 or 28 days UUO in the neonate, renal ceramide was elevated compared with sham or intact opposite kidneys, and renal apoptosis was directly related to ceramide content (r = 0.99, P < 0.001). Moreover, renal ceramide was reduced by relief of obstruction (P < 0.05). There was less apoptosis in the obstructed kidney of the adult than the neonate, and UUO had no effect on ceramide content at 14 days in the adult. We conclude that prolonged UUO (at least 14 days duration) increases endogenous renal ceramide in the neonatal but not the adult rat. It is likely that this contributes to the prolonged renal apoptotic response of the neonatal obstructed kidney.  (+info)

Downregulation of AQP1, -2, and -3 after ureteral obstruction is associated with a long-term urine-concentrating defect. (62/693)

Previously, we demonstrated that 24 h of bilateral ureteral obstruction (BUO) and short-term release of BUO was associated with a decrease in the expression of aquaporin-2 (AQP2), polyuria, and a reduced urinary concentrating capacity (10). The purposes of the present study were to examine whether BUO and the long-term release of BUO (BUO-R) for 3, 14, and 30 days were associated with changes in the expression of renal AQP1, AQP2, and AQP3 and whether such changes were associated with parallel changes in urinary output and urinary concentrating capacity. Rats (n = 4-7 in each group) were kept in metabolic cages for measurements of urinary output. Kidneys were removed to determine the expression levels of AQP1, AQP2, and AQP3 by semiquantitative immunoblotting. AQP2 was downregulated after 24 h of BUO (42 +/- 3%). Downregulation of AQP2 persisted 3 (43 +/- 14%; P < 0.01) and 15 days after BUO-R (48 +/- 11%; P < 0.01) but was normalized 30 days after BUO-R. AQP3 showed a similar pattern. Moreover, AQP1 was downregulated in response to BUO (65 +/- 7%) and remained downregulated 3 days after BUO-R (41 +/- 5%), 14 days after BUO-R (57 +/- 8%), and 30 days after BUO-R (59 +/- 5%). BUO-R resulted in a significant polyuria that gradually decreased, although it remained significant at day 30. Urinary concentrating capacity remained significantly impaired when determined 3, 14, and 30 days after BUO-R in response to a 24-h period of thirst (1,712 +/- 270 vs. 2,880 +/- 91 mosmol/kgH2O at day 30, P < 0.05). In conclusion, the expression of AQP1, AQP2, and AQP3 were long-term downregulated after BUO-R, suggesting that dysregulation of aquaporins located at the proximal tubule, thin descending limb of the loop of Henle, and the collecting duct may contribute to the long-term polyuria and impairment of urinary concentrating capacity associated with obstructive nephropathy.  (+info)

Deregulation of renal transforming growth factor-beta1 after experimental short-term ureteric obstruction in fetal sheep. (63/693)

Renal malformations are the commonest cause of chronic renal failure in children and they are often associated with urinary tract abnormalities that impair fetal urine flow. Up-regulation of transforming growth factor-beta1 (TGF-beta1) occurs after experimental postnatal urinary tract obstruction and we recently reported increased levels of TGF-beta1 in human renal malformations (Yang SP et al, Am J Pathol 2000, 157:1633-1647). These findings led us to propose that obstruction-induced stretch of developing renal epithelia causes up-regulation of TGF-beta1, which then perturbs renal development. In this study, therefore, we examined expression of components of the TGF-beta1 signaling axis in a previously characterized ovine model of fetal short-term urine flow impairment in which complete unilateral ureteric obstruction was induced at 90 days when a few layers of glomeruli had formed. Up-regulation of TGF-beta1 mRNA and protein was observed in obstructed kidneys, compared to sham-operated control organs, after only 10 days. Increased levels of TGF-beta1 receptors I (TGF-betaR1) and II (TGF-betaR2) were also detected on Western blot, and the cytokine and TGF-betaR1 co-localized in disrupted epithelia on immunohistochemistry. De novo expression of alpha-smooth muscle actin, a structural protein up-regulated during TGF-beta1-induced phenotypic switching between human renal dysplastic epithelial and mesenchymal lineages in vitro, was also observed in these aberrant epithelia. These findings implicate increased TGF-beta1 signaling in the early biological changes generated by fetal urinary tract obstruction.  (+info)

PAI-1 deficiency attenuates the fibrogenic response to ureteral obstruction. (64/693)

BACKGROUND: Progressive renal disease is characterized by the induction of plasminogen activator inhibitor-1 (PAI-1), suggesting that impaired activity of the renal plasmin cascade may play a role in renal fibrosis. METHODS: To test this hypothesis, the severity of renal fibrosis caused by unilateral ureteral obstruction (UUO) was compared in PAI-1 wild-type (+/+) and PAI-1 deficient (-/-) mice. The extent of interstitial inflammation and fibrosis, renal plasminogen activator and plasmin activity, and renal expression of profibrotic genes was evaluated after 3, 7, and 14 days of UUO. RESULTS: Renal PAI-1 mRNA levels increased 8- to 16-fold in the +/+ mice after UUO surgery, and PAI-1 protein was detected in kidney homogenates. Interstitial fibrosis was significantly attenuated in -/- mice compared with +/+ mice at day 7 and day 14, based on the interstitial area stained with picrosirius red and total kidney collagen content. However, neither the mean renal plasminogen activator nor plasmin activities were increased in -/- mice compared with +/+ mice. The number of interstitial macrophages were significantly lower in the -/- mice three and seven days after UUO; interstitial myofibroblasts were significantly fewer at three days. At the same time points, this altered interstitial cellularity was associated with a significant reduction in renal mRNA levels for transforming growth factor-beta and procollagens alpha 1(I) and alpha 1(III). CONCLUSIONS: These studies establish an important fibrogenic role for PAI-1 in the renal fibrogenic response. The results demonstrate that one important fibrosis-promoting function of PAI-1 is its role in the recruitment of fibrosis-inducing cells, including myofibroblasts and macrophages.  (+info)