Quantification of prosthetic outcomes: elastomeric gel liner with locking pin suspension versus polyethylene foam liner with neoprene sleeve suspension. (1/19)

For this randomized crossover trial, we compared two common transtibial socket suspension systems: the Alpha liner with distal locking pin and the Pe-Lite liner with neoprene suspension sleeve. Our original hypotheses asserted that increased ambulatory activity, wear time, comfort, and satisfaction would be found with the elastomeric suspension system. Thirteen subjects completed the study. Following 2.5-month accommodation to each condition, ambulatory activity was recorded (steps/minute for 2 weeks), and subjects completed three questionnaires specific to prosthesis use and pain: the Prosthesis Evaluation Questionnaire (PEQ), a Brief Pain Inventory (BPI) excerpt, and the Socket Comfort Score (SCS). Upon completion, subjects selected their favored system for continued use. Ten subjects preferred the Pe-Lite and three the Alpha. Subjects spent 82% more time wearing the Pe-Lite and took 83% more steps per day. Ambulatory intensity distribution did not differ between systems. No statistically significant differences were found in questionnaire results. Subject feedback for each system was both positive and negative.  (+info)

Prenylflavones from Psoralea corylifolia inhibit nitric oxide synthase expression through the inhibition of I-kappaB-alpha degradation in activated microglial cells. (2/19)

The overproduction of nitric oxide (NO) by inducible nitric oxide synthase (iNOS) switches the function of NO from a physiological neuromodulator to a neurotoxic effector in central nervous system (CNS) after brain injury. From the methanol extracts of Psoralea corylifolia, we purified two inhibitors of NO production in lipopolysaccharide (LPS)-activated microglia by activity guided purification along with two inactive compounds. The active compounds were identified as a chromenoflavanone [7,8-dihydro-8-(4-hydroxyphenyl)-2,2-dimethyl-2H,6H-benzo-(1,2-b:5,4-b')dipyran-6 -one] (1) and 4-hydroxylonchocarpin (2). And the inactive two compounds were identified as bavachinin (3) and bavachalcone (4) by spectral analysis. The compound 2 was isolated first time from this plant. Compounds 1 and 2 inhibited the production of NO in LPS-activated microglia in a dose dependent manner (IC(50)'s were 11.4, 10.2 microM, respectively). They also suppressed the expression of protein and mRNA of iNOS in LPS-activated microglial cells at 10 muM as observed in Western blot analysis and RT-PCR experiment. Furthermore they inhibited the degradation of I-kappaB-alpha in activated microglia. These results imply that compounds 1 and 2 can be lead compounds for the development of neuroprotective drug with the inhibitory activity of NO overproduction by activated microglial cells.  (+info)

Chemical constituents of malagasy liverworts, part V: prenyl bibenzyls and clerodane diterpenoids with nitric oxide inhibitory activity from Radula appressa and Thysananthus spathulistipus. (3/19)

3Beta,4beta:15,16-diepoxy-13(16),14-clerodadiene (1) and a new clerodane diterpenoid designated thysaspathone (2) were isolated from the liverwort Thysananthus spathulistipus, while Radula appressa produced radulannin A (3), radulannin L (4), 2-geranyl-3,5-dihydroxybibenzyl (5), 2(S)-2-methyl-2-(4-methyl-3-pentenyl)-7-hydroxy-5-(2-phenylethyl) chromene (o-cannabichromene) (6), 6-hydroxy-4-(2-phenylethyl) benzofuran (7), and o-cannabicyclol (8). All of the isolated compounds inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and the greatest inhibition was attributed to compound 5, with an IC50 value of 4.5 microM.  (+info)

Deletion of PrBP/delta impedes transport of GRK1 and PDE6 catalytic subunits to photoreceptor outer segments. (4/19)

The mouse Pde6d gene encodes a ubiquitous prenyl binding protein, termed PrBP/delta, of largely unknown physiological function. PrBP/delta was originally identified as a putative rod cGMP phosphodiesterase (PDE6) subunit in the retina, where it is relatively abundant. To investigate the consequences of Pde6d deletion in retina, we generated a Pde6d(-/-) mouse by targeted recombination. Although manifesting reduced body weight, the Pde6d(-/-) mouse was viable and fertile and its retina developed normally. Immunocytochemistry showed that farnesylated rhodopsin kinase (GRK1) and prenylated rod PDE6 catalytic subunits partially mislocalized in Pde6d(-/-) rods, whereas rhodopsin was unaffected. In Pde6d(-/-) rod single-cell recordings, sensitivity to single photons was increased and saturating flash responses were prolonged. Pde6d(-/-) scotopic paired-flash electroretinograms indicated a delay in recovery of the dark state, likely due to reduced levels of GRK1 in rod outer segments. In Pde6d(-/-) cone outer segments, GRK1 and cone PDE6alpha' were present at very low levels and the photopic b-wave amplitudes were reduced by 70%. Thus the absence of PrBP/delta in retina impairs transport of prenylated proteins, particularly GRK1 and cone PDE, to rod and cone outer segments, resulting in altered photoreceptor physiology and a phenotype of a slowly progressing rod/cone dystrophy.  (+info)

A model for transport of membrane-associated phototransduction polypeptides in rod and cone photoreceptor inner segments. (5/19)

We discuss putative mechanisms of membrane protein transport in photoreceptors based on Pde6d and Gucy2e/Gucy2f knockout mice. Knockout of the Pde6d gene encoding PrBP/delta, a prenyl binding protein present in the retina at relatively high levels, was shown to impair transport of G-protein coupled receptor kinase 1 (GRK1) and cone phosphodiesterase alpha' subunit (PDE6alpha') to the rod and cone outer segments. Other prenylated proteins are minimally affected, suggesting some specificity of interaction. Knockout of the Gucy2e gene encoding guanylate cyclase 1 (GC1) disrupted transport of G-protein coupled receptor kinase 1 (GRK1), cone PDE6alpha', cone transducin alpha and gamma subunits (cTalpha and cTgamma) to the cone outer segments, while a GC1/GC2 double knockout prevented transport of rod PDE6, but not transducin, GRK1, or rhodopsin, to the rod outer segments. These knockout phenotypes suggest that PrBP/delta functions in extracting prenylated proteins from the endoplasmic reticulum (ER) where they dock after prenylation, and that GC-bearing membranes may co-transport peripheral membrane proteins in vesicles. We conclude that distinct pathways have evolved in rods and cones for transport of integral and peripherally membrane-associated proteins.  (+info)

New cationic polyprenyl derivative proposed as a lipofecting agent. (6/19)

Cationic linear poly-cis-isoprenoid prepared from natural plant polyprenol in a mixture with dioleyl phosphatidylethanolamine was found to be an effective lipofection agent for eukaryotic cells. The transfecting activity is related to the poly-cis structure of the polyprenyl chain.  (+info)

Specific partial reduction of geranylgeranyl diphosphate by an enzyme from the thermoacidophilic archaeon Sulfolobus acidocaldarius yields a reactive prenyl donor, not a dead-end product. (7/19)

 (+info)

Biosynthesis of ubiquinone compounds with conjugated prenyl side chains. (8/19)

 (+info)