Activation of orphan receptor-mediated transcription by Ca(2+)/calmodulin-dependent protein kinase IV. (1/136)

Retinoid-related receptor alpha (RORalpha) is an orphan nuclear receptor that constitutively activates transcription from its cognate response element. We show that RORalpha is Ca(2+ )responsive, and a Ca(2+)/calmodulin-independent form of Ca(2+)/calmodulin-dependent protein kinase IV (CaMKIV) potentiates RORalpha-dependent transcription 20- to 30-fold. Other orphan receptors including RORalpha2, RORgamma and COUP-TFI are also potentiated by CaMKIV. Transcriptional activation by CaMKIV is orphan receptor selective and does not occur with either the thyroid hormone or estrogen receptor. CaMKIV does not phosphorylate RORalpha or its ligand-binding domain (LBD) in vitro, although the LBD is essential for transactivation. Therefore, the RORalpha LBD was used in the mammalian two-hybrid assay to identify a single class of small peptide molecules containing LXXLL motifs that interacted with greater affinity in the presence of CaMKIV. This class of peptides antagonized activation of orphan receptor-mediated transcription by CaMKIV. These studies demonstrate a pivotal role for CaMKIV in the regulation of orphan receptor-mediated transcription.  (+info)

Evidence for the presence of peroxisome proliferator-activated receptor (PPAR) alpha and gamma and retinoid Z receptor in cartilage. PPARgamma activation modulates the effects of interleukin-1beta on rat chondrocytes. (2/136)

Peroxisome proliferator-activated receptor (PPAR) alpha, PPARgamma, and retinoid acid receptor-related orphan receptor (ROR) alpha are members of the nuclear receptor superfamily of ligand-activated transcription factors. Although they play a key role in adipocyte differentiation, lipid metabolism, or glucose homeostasis regulation, recent studies suggested that they might be involved in the inflammation control and especially in the modulation of the cytokine production. This strongly suggests that these transcriptional factors could modulate the deleterious effects of interleukin-1 (IL-1) on cartilage. However, to date, their presence in cartilage has never been investigated. By quantitative reverse transcription-polymerase chain reaction, Western blot, and immunocytochemistry analysis, we demonstrated, for the first time, the presence of PPARalpha, PPARgamma, and RORalpha in rat cartilage, at both mRNA and protein levels. Comparatively, the PPARalpha mRNA content in cartilage was much lower than in the liver but not significantly different to that of the adipose tissue. PPARgamma mRNA expression in cartilage was weak, when compared with adipose tissue, but similar to that found in the liver. RORalpha mRNA levels were similar in the three tissues. mRNA expression of the three nuclear receptors was very differently modulated by IL-1 or mono-iodoacetate treatments. This indicates that they should be unequally involved in the effects of IL-1 on chondrocyte, which is in accordance with results obtained in other cell types. Indeed, we showed that 15d-PGJ2 mainly, but also the drug troglitazone, that are ligands of PPARgamma could significantly counteract the decrease in proteoglycan synthesis and NO production induced by IL-1. By contrast, PPARalpha ligands such as Wy-14,643 or clofibrate had no effect on this process. Therefore, the presence of PPARgamma in chondrocytes opens up new perspectives to modulate the effects of cytokines on cartilage by the use of specific ligands. The function of the two other transcription factors, PPARalpha and RORalpha identified in chondrocytes remains to be explored.  (+info)

Transcriptional regulation of apolipoprotein C-III gene expression by the orphan nuclear receptor RORalpha. (3/136)

Triglyceride-rich remnant lipoproteins are considered as major risk factors contributing to the pathogenesis of atherosclerosis. Because apolipoprotein (apo) C-III is a major determinant of plasma triglyceride and remnant lipoprotein metabolism, it is important to understand how the expression of this gene is regulated. In the present study, we identified the orphan nuclear receptor RORalpha1 as a regulator of human and mouse apo C-III gene expression. Plasma triglyceride and apo C-III protein concentrations in staggerer (sg/sg) mice, homozygous for a deletion in the RORalpha gene, were significantly lower than in wild type littermates. The lowered plasma apo C-III levels were associated with reduced apo C-III mRNA levels in liver and intestine of sg/sg mice. Transient transfection experiments in human hepatoma HepG2, human colonic CaCO2, and rabbit kidney RK13 cells demonstrated that overexpression of the human RORalpha1 isoform specifically increases human apo C-III promoter activity, indicating that RORalpha1 enhances human apo C-III gene transcription. RORalpha1 response elements were mapped by promoter deletion analysis and gel shift experiments to two AGGTCA half-sites located at positions -83/-78 (within the C3P site) and -23/-18 (downstream of the TATA box) in the human apo C-III promoter, with the -23/-18 site exhibiting the highest binding affinity. Transfection of site-directed mutated constructs in HepG2 cells indicated that the RORalpha1 effect is predominantly mediated by the -23/-18 site. This site is conserved in the mouse apo C-III gene promoter. Moreover, RORalpha binds to the equivalent mouse site and activates constructs containing three copies of the mouse site cloned in front of an heterologous promoter. Taken together, our data identify RORalpha as a transcriptional regulator of apo C-III gene expression, providing a novel, physiological role for RORalpha1 in the regulation of genes controlling triglyceride metabolism.  (+info)

Differential binding and transcriptional behaviour of two highly related orphan receptors, ROR alpha(4) and ROR beta(1). (4/136)

Nuclear receptors are ligand-inducible transcription factors that can be classified into two major groups according to their DNA-binding properties. Members of the first group bind to DNA as dimers, either homo- or heterodimers; members of the second group are also able to bind as monomers. While the first group has been extensively studied biochemically, very little is known about nuclear receptors that bind and act as monomers. In this study, we compared the binding and transcriptional behaviour of ROR alpha (NR1F1) and ROR beta (NR1F2), two representatives of the subgroup of monomer-binding receptors. We show that although they are highly related in their amino acid structures, they display remarkably different binding behaviours. Furthermore, we provide evidence that ROR beta can efficiently activate transcription in vitro as a monomer.  (+info)

The orphan nuclear receptor ROR alpha is a negative regulator of the inflammatory response. (5/136)

Retinoid-related orphan receptor alpha (ROR alpha) (NR1F1) is a member of the nuclear receptor superfamily whose biological functions are largely unknown. Since staggerer mice, which carry a deletion in the ROR alpha gene, suffer from immune abnormalities, we generated an adenovirus encoding ROR alpha1 to investigate its potential role in control of the inflammatory response. We demonstrated that ROR alpha is expressed in human primary smooth-muscle cells and that ectopic expression of ROR alpha1 inhibits TNFalpha-induced IL-6, IL-8 and COX-2 expression in these cells. ROR alpha1 negatively interferes with the NF-kappaB signalling pathway by reducing p65 translocation as demonstrated by western blotting, immunostaining and electrophoretic mobility shift assays. This action of ROR alpha1 on NF-kappaB is associated with the induction of IkappaB alpha, the major inhibitory protein of the NF-kappaB signalling pathway, whose expression was found to be transcriptionally upregulated by ROR alpha1 via a ROR response element in the IkappaB alpha promoter. Taken together, these data identify ROR alpha1 as a potential target in the treatment of chronic inflammatory diseases, including atherosclerosis and rheumatoid arthritis.  (+info)

TNF-alpha inhibits 3T3-L1 adipocyte differentiation without downregulating the expression of C/EBPbeta and delta. (6/136)

Tumor necrosis factor-alpha (TNF-alpha) has been reported to inhibit adipocyte differentiation in which multiple transcription factors including CCAAT enhancer binding proteins (C/EBPs) and peroxisome proliferator-activated receptor (PPAR) gamma play an important role. Induction of C/EBPalpha and PPARgamma, which regulate the expression of many adipocyte-related genes, is dependent on the expression of C/EBPbeta and C/EBPdelta at the early phase of adipocyte differentiation. To elucidate the mechanism by which TNF-alpha inhibits adipocyte differentiation, we examined the effect of TNF-alpha on the expression of these transcription factors in mouse 3T3-L1 preadipocytes. TNF-alpha did not abrogate the induction of C/EBPbeta and C/EBPdelta in response to differentiation stimuli. In fully differentiated adipocytes, TNF-alpha rapidly induced C/EBPbeta and C/EBPdelta, whereas it downregulated the expression of C/EBPalpha and PPARgamma. Our results suggest that TNF-alpha inhibits adipocyte differentiation independently of the downregulation of C/EBPbeta and C/EBPdelta.  (+info)

Increased ischemia-induced angiogenesis in the staggerer mouse, a mutant of the nuclear receptor Roralpha. (7/136)

Ror alpha is an orphan nuclear receptor. In homozygous staggerer mutant mice (Ror alpha(sg/sg)), a deletion within the Ror alpha gene leads to an overexpression of inflammatory cytokines. Because inflammation and hypoxia are 2 key stimuli of ischemia-induced angiogenesis, we studied the role of Ror alpha in this setting. Ischemia was induced by ligation of the right femoral artery in C57BL/6 Ror alpha(+/+) and Ror alpha(sg/sg) mice. After 3 and 28 days, angiogenesis was evaluated by microangiography, measurement of capillary density using immunohistochemistry (anti-CD31), and measurement of blood flow by laser Doppler imaging. At day 3, angiographic score and blood flow were similar in Ror alpha(sg/sg) mice and in Ror alpha(+/+) littermates. Conversely, at day 28, Ror alpha(sg/sg) mice showed a significant 2-fold increase in angiographic score and a 3-fold increase in capillary density within the ischemic hindlimb compared with control. Functionally, this coincided with a significant rise in leg perfusion in Ror alpha(sg/sg) mice (0.83+/-0.05 for ischemic/nonischemic leg perfusion ratio) compared with Ror(+/+) mice (0.66+/-0.04, P<0.05). In addition, more extensive angiogenesis in Ror alpha(sg/sg) mice correlated with an increased expression of eNOS protein by 83+/-12% and 71+/-24% at 3 and 28 days, respectively (P<0.05), whereas the level of the antiangiogenic cytokine IL-12 was significantly reduced by 38+/-10% at day 28 (P<0.05). Conversely, no changes in VEGF expression were observed. Our study identifies for the first time a new role for Ror alpha as a potent negative regulator of ischemia-induced angiogenesis.  (+info)

Expression and regulation of the nuclear receptor RORalpha in human vascular cells. (8/136)

Retinoic acid receptor-related orphan receptor alpha (RORalpha) is a member of the nuclear receptor superfamily. Using RT-PCR, RORalpha mRNA was identified in human aortic smooth muscle cells (hASMC), endothelial cells (EC), as well as in human mammary arteries and atherosclerotic plaques. We found a predominant expression of RORalpha1 in hASMC, and RORalpha4 in EC. RORalpha2 and RORalpha3 were not detected. In arteries, RORalpha4 was predominant compared with RORalpha1. In atherosclerotic plaques, RORalpha expression was significantly decreased. In hASMC stimulated with cytokines, RORalpha expression was increased by 2.5-fold. RORalpha mRNA was also significantly increased (approximately 2-fold) in hASMC and EC cultured under hypoxia.  (+info)