Establishment of an infectious RNA transcription system for Striped jack nervous necrosis virus, the type species of the betanodaviruses. (1/164)

A system has been established to produce infectious RNA transcripts for Striped jack nervous necrosis virus (SJNNV), the type species of the betanodaviruses, which infect fish. An enzymological analysis suggested that both RNA1 and RNA2 of SJNNV have a 5' cap. Both RNAs were largely resistant to 3' polyadenylation and ligation, suggesting the presence of an interfering 3' structure, while a small quantity of viral RNAs were polyadenylated in vitro. The complete 5' and 3' non-coding sequences of both segments were determined using the rapid amplification of cDNA ends method. Based on the terminal sequences obtained, RT-PCR was carried out and plasmid clones containing full-length cDNA copies of both RNAs, positioned downstream of a T7 promoter, were constructed. These plasmids were cleaved at a unique restriction site just downstream of the 3' terminus of each SJNNV sequence and were transcribed in vitro into RNA with a cap structure analogue. A mixture of the transcripts was transfected into the fish cell line E-11. Using indirect immunofluorescence staining with anti-SJNNV serum, fluorescence was observed specifically in these transfected cells; this culture supernatant exhibited pathogenicity to striped jack larvae. Northern blot analysis of E-11 cells infected with the recombinant virus or SJNNV showed small RNA (ca. 0.4 kb) that was newly synthesized and corresponded to the 3'-terminal region of RNA1. Finally, the complete nucleotide sequences of these functional cDNAs (RNA1, 3107 nt; RNA2, 1421 nt) were determined. This is the first report of betanodavirus cDNA clones from which infectious genomic RNAs can be transcribed.  (+info)

Characterization and template properties of RNA dimers generated during flock house virus RNA replication. (2/164)

Flock house virus (FHV) is the best studied member of the Nodaviridae, a family of small, nonenveloped, isometric RNA viruses of insects and fish. Nodavirus genomes comprise two single-stranded positive-sense RNA segments (RNAs 1 and 2) that encode the viral RNA-dependent RNA polymerase (RdRp) and capsid protein precursor, respectively. The RdRp replicates both genomic RNAs and also generates a subgenomic RNA (RNA3) that is not encapsidated. Although genomic RNAs replicate through negative-sense intermediates, little is known about these RNAs or the details of the replication mechanism. Negative-sense RNAs 1, 2, and 3, as well as putative dimers of RNAs 2 and 3, have been detected in previous studies. In this study we detected dimers of RNAs 1, 2, and 3 by Northern blot analyses of RNA samples from FHV-infected Drosophila cells, as well as from mammalian and yeast cells supporting FHV RNA replication. Characterization of these RNA species by RT-PCR and sequence determination showed that they contained head-to-tail junctions of FHV RNAs. RNAs containing the complete sequence of RNA2 joined to RNA3 were also detected during replication. To examine the template properties of these dimeric RNAs, we made corresponding cDNAs and transcribed them from a T7 promoter in mammalian cells constitutively expressing T7 RNA polymerase, together with RNA1 to provide the RdRp. Although heterologous terminal extensions inhibit FHV RNA replication, monomeric RNA2 was resolved and replicated from complete or partial homodimer templates and from an RNA2-RNA3 heterodimer.  (+info)

Flock house virus RNA replicates on outer mitochondrial membranes in Drosophila cells. (3/164)

The identification and characterization of host cell membranes essential for positive-strand RNA virus replication should provide insight into the mechanisms of viral replication and potentially identify novel targets for broadly effective antiviral agents. The alphanodavirus flock house virus (FHV) is a positive-strand RNA virus with one of the smallest known genomes among animal RNA viruses, and it can replicate in insect, plant, mammalian, and yeast cells. To investigate the localization of FHV RNA replication, we generated polyclonal antisera against protein A, the FHV RNA-dependent RNA polymerase, which is the sole viral protein required for FHV RNA replication. We detected protein A within 4 h after infection of Drosophila DL-1 cells and, by differential and isopycnic gradient centrifugation, found that protein A was tightly membrane associated, similar to integral membrane replicase proteins from other positive-strand RNA viruses. Confocal immunofluorescence microscopy and virus-specific, actinomycin D-resistant bromo-UTP incorporation identified mitochondria as the intracellular site of protein A localization and viral RNA synthesis. Selective membrane permeabilization and immunoelectron microscopy further localized protein A to outer mitochondrial membranes. Electron microscopy revealed 40- to 60-nm membrane-bound spherical structures in the mitochondrial intermembrane space of FHV-infected cells, similar in ultrastructural appearance to tombusvirus- and togavirus-induced membrane structures. We concluded that FHV RNA replication occurs on outer mitochondrial membranes and shares fundamental biochemical and ultrastructural features with RNA replication of positive-strand RNA viruses from other families.  (+info)

Recovery of infectious pariacoto virus from cDNA clones and identification of susceptible cell lines. (4/164)

Pariacoto virus (PaV) is a nodavirus that was recently isolated in Peru from the Southern armyworm, Spodoptera eridania. Virus particles are non enveloped and about 30 nm in diameter and have T=3 icosahedral symmetry. The 3.0-A crystal structure shows that about 35% of the genomic RNA is icosahedrally ordered, with the RNA forming a dodecahedral cage of 25-nucleotide (nt) duplexes that underlie the inner surface of the capsid. The PaV genome comprises two single-stranded, positive-sense RNAs: RNA1 (3,011 nt), which encodes the 108-kDa catalytic subunit of the RNA-dependent RNA polymerase, and RNA2 (1,311 nt), which encodes the 43-kDa capsid protein precursor alpha. In order to apply molecular genetics to the structure and assembly of PaV, we identified susceptible cell lines and developed a reverse genetic system for this virus. Cell lines that were susceptible to infection by PaV included those from Spodoptera exigua, Helicoverpa zea and Aedes albopictus, whereas cells from Drosophila melanogaster and Spodoptera frugiperda were refractory to infection. To recover virus from molecular clones, full-length cDNAs of PaV RNAs 1 and 2 were cotranscribed by T7 RNA polymerase in baby hamster kidney cells that expressed T7 RNA polymerase. Lysates of these cells were infectious both for cultured cells from Helicoverpa zea (corn earworm) and for larvae of Galleria mellonella (greater wax moth). The combination of infectious cDNA clones, cell culture infectivity, and the ability to produce milligram amounts of virus allows the application of DNA-based genetic methods to the study of PaV structure and assembly.  (+info)

Sea bream Sparus aurata, an asymptomatic contagious fish host for nodavirus. (5/164)

During an epidemiological survey of viral encephalopathy and retinopathy (VER) in diseased sea bass Dicentrarchus labrax, a nodavirus isolate was recovered from net pen-reared sea bream Sparus aurata harboured in the same farming premises. After the virus was isolated and identified by immunofluorescence on SSN-1 cells, sequence analysis with a PCR product from the T4 region of the capsid protein gene indicated that the virus shared 100% identity with a pathogenic virus strain isolated from sea bass. Infection trials demonstrated the pathogenicity of the sea bream virus isolate for juvenile sea bass whereas sea bream infected with the same virus isolate remained asymptomatic even following intramuscular injection of virus. Nevertheless, the sea bream appeared to be a potential carrier of nodavirus, as juvenile sea bass became infected when maintained in a tank containing experimentally contaminated sea bream.  (+info)

DNA-directed expression of an animal virus RNA for replication-dependent colony formation in Saccharomyces cerevisiae. (6/164)

To date, the insect nodavirus flock house virus (FHV) is the only virus of a higher eukaryote that has been shown to undergo a full replicative cycle and produce infectious progeny in the yeast Saccharomyces cerevisiae. The genome of FHV is composed of two positive-sense RNA segments: RNA1, encoding the RNA replicase, and RNA2, encoding the capsid protein precursor. When yeast cells expressing FHV RNA replicase were transfected with a chimeric RNA composed of a selectable gene flanked by the termini of RNA2, the chimeric RNA was replicated and transmitted to daughter cells indefinitely. In the work reported here, we developed a system in which a selectable chimeric RNA replicon was transcribed from an inducible RNA polymerase II (polII) promoter in vivo in yeast. To render marker gene expression absolutely dependent on RNA replication, the primary polII transcript was made negative in sense and contained an intron that blocked the translation of cryptic transcripts from the opposite DNA strand. The RNA products of DNA-templated transcription, processing, and RNA replication were characterized by Northern blot hybridization and primer extension analysis. Marker gene expression and colony growth under selective conditions depended strictly on FHV RNA replication, with background colonies arising at a frequency of fewer than 1 in 10(8) plated cells. The utility of the system was demonstrated by introducing a second chimeric replicon and showing that at least two different selectable markers could be simultaneously expressed by means of RNA replication. This is the first example of FHV RNA1-dependent selectable marker expression initiated in vivo and will greatly facilitate the identification and characterization of the requirements and inhibitors of RNA replication.  (+info)

Characterization of virus-like particles assembled in a recombinant baculovirus system expressing the capsid protein of a fish nodavirus. (7/164)

Betanodaviruses are causative agents of neurological disorders in several species of fish. We cloned and sequenced the RNA2 segment of two grouper viruses isolated from Epinephelus malabaricus (malabaricus grouper nervous necrosis virus, MGNNV) and Epinephelus lanceolatus (dragon grouper nervous necrosis virus, DGNNV). The sequences of the two RNAs were 99% identical and comparison with previously sequenced RNA2 segments of fish nodaviruses striped jack nervous necrosis virus, Atlantic halibut virus, sea bass encephalitis virus, and greasy grouper nervous necrosis virus (GGNNV) revealed that MGNNV and DGNNV were most closely related to GGNNV. No correlation of sequence with geographical habitat was detected. The MGNNV coat protein, the gene product of RNA2, was expressed in Sf21 cells with a recombinant baculovirus system and virus-like particles (VLPs) spontaneously formed. Two types of VLPs were observed: a slower sedimenting particle was RNase-sensitive and stain-permeable, while the faster sedimenting particle survived RNase treatment and was not stain-permeable. An image reconstruction of the latter, obtained with electron cryomicroscopy data, revealed a morphology consistent with T = 3 quasi-symmetry but with features significantly different from insect nodavirus structures at the same resolution. This assembly system allows the first biophysical comparisons of fish and insect nodavirus structure, assembly, and stability.  (+info)

Long-distance base pairing in flock house virus RNA1 regulates subgenomic RNA3 synthesis and RNA2 replication. (8/164)

Replication of flock house virus (FHV) RNA1 and production of subgenomic RNA3 in the yeast Saccharomyces cerevisiae provide a useful tool for the dissection of FHV molecular biology and host-encoded functions involved in RNA replication. The replication template activity of RNA1 can be separated from its coding potential by supplying the RNA1-encoded replication factor protein A in trans. We constructed a trans-replication system in yeast to examine cis-acting elements in RNA1 that control RNA3 production, as well as RNA1 and RNA2 replication. Two cis elements controlling RNA3 production were found. A proximal subgenomic control element was located just upstream of the RNA3 start site (nucleotides [nt] 2282 to 2777). A short distal element also controlling RNA3 production (distal subgenomic control element) was identified 1.5 kb upstream, at nt 1229 to 1239. Base pairing between these distal and proximal elements was shown to be essential for RNA3 production by covariation analysis and in vivo selection of RNA3-expressing replicons from plasmid libraries containing random sequences in the distal element. Two distinct RNA1 replication elements (RE) were mapped within the 3' quarter of RNA1: the intRE (nt 2322 to 2501) and the 3'RE (nt 2735 to 3011). The 3'RE significantly overlaps the RNA3 region in RNA1, and this information was applied to produce improved RNA3-based vectors for foreign-gene expression. In addition, replication of an RNA2 derivative was dependent on RNA1 templates capable of forming the long-distance interaction that controls RNA3 production.  (+info)