In vitro activities of ketolides HMR 3647 [correction of HRM 3647] and HMR 3004 [correction of HRM 3004], levofloxacin, and other quinolones and macrolides against Neisseria spp. and Moraxella catarrhalis. (1/381)

In vitro activities of the ketolides HMR 3647 [corrected] and HMR 3004 [corrected] against pathogenic Neisseria gonorrhoeae and N. meningitidis, saprophytic Neisseria isolates, and Moraxella catarrhalis were determined. The comparison of ketolide activities with those of the other macrolides shows a much better activity in the majority of species, with macrolide MICs at which 90% of the isolates are inhibited between 8- and 10-fold higher.  (+info)

Pathogenic neisseriae: complexity of pathogen-host cell interplay. (2/381)

Recent studies have provided insight into the function of important neisserial adhesins (pili and Opa) and their interaction with cellular receptors, including members of heparan sulfate proteoglycan, CD66, and integrin receptor families. These interactions not only allow colonization of the human mucosa but also stimulate cellular signaling cascades involving phosphatidylcholine-dependent phospholipase C, acidic sphingomyelinase and protein kinase C in epithelial cells, and Src-related kinases, Rac1, p21-activated kinase, and Jun N-terminal kinase in phagocytic cells. Activation of these pathways is essential for cellular entry and intracellular accommodation of the pathogens but also leads to early induction of cytokine release, thus priming the immune response. Detailed knowledge of the cellular signaling cascades that are activated by infection will aid us in applying both current and novel interfering drugs (in addition to classical antibiotic therapy) as therapy and prophylaxis for persistent or otherwise difficult-to-treat bacterial infections, including periodontal infections.  (+info)

Structural and evolutionary inference from molecular variation in Neisseria porins. (3/381)

The porin proteins of the pathogenic Neisseria species, Neisseria gonorrhoeae and Neisseria meningitidis, are important as serotyping antigens, putative vaccine components, and for their proposed role in the intracellular colonization of humans. A three-dimensional structural homology model for Neisseria porins was generated from Escherichia coli porin structures and N. meningitidis PorA and PorB sequences. The Neisseria sequences were readily assembled into the 16-strand beta-barrel fold characteristic of porins, despite relatively low sequence identity with the Escherichia proteins. The model provided information on the spatial relationships of variable regions of peptide sequences in the PorA and PorB trimers and insights relevant to the use of these proteins in vaccines. The nucleotide sequences of the porin genes from a number of other Neisseria species were obtained by PCR direct sequencing and from GenBank. Alignment and analysis of all available Neisseria porin sequences by use of the structurally conserved regions derived from the PorA and PorB structural models resulted in the recovery of an improved phylogenetic signal. Phylogenetic analyses were consistent with an important role for horizontal genetic exchange in the emergence of different porin classes and confirmed the close evolutionary relationships of the porins from N. meningitidis, N. gonorrhoeae, Neisseria lactamica, and Neisseria polysaccharea. Only members of this group contained three conserved lysine residues which form a potential GTP binding site implicated in pathogenesis. The model placed these residues on the inside of the pore, in close proximity, consistent with their role in regulating pore function when inserted into host cells.  (+info)

Erythromycin-resistant Neisseria gonorrhoeae and oral commensal Neisseria spp. carry known rRNA methylase genes. (4/381)

Two Neisseria gonorrhoeae isolates from Seattle and two isolates from Uruguay were resistant to erythromycin (MIC, 4 to 16 microg/ml) and had reduced susceptibility to azithromycin (MIC, 1 to 4 microg/ml) due to the presence of the self-mobile rRNA methylase gene(s) ermF or ermB and ermF. The two Seattle isolates and one isolate from Uruguay were multiresistant, carrying either the 25.2-MDa tetM-containing plasmid (Seattle) or a beta-lactamase plasmid (Uruguay). Sixteen commensal Neisseria isolates (10 Neisseria perflava-N. sicca, 2 N. flava, and 4 N. mucosa) for which erythromycin MICs were 4 to 16 microg/ml were shown to carry one or more known rRNA methylase genes, including ermB, ermC, and/or ermF. Many of these isolates also were multiresistant and carried the tetM gene. This is the first time that a complete transposon or a complete conjugative transposon carrying an antibiotic resistance gene has been described for the genus Neisseria.  (+info)

Networks and groups within the genus Neisseria: analysis of argF, recA, rho, and 16S rRNA sequences from human Neisseria species. (5/381)

To understand the pattern of nucleotide sequence variation among bacteria that frequently exchange chromosomal genes, we analyzed sequences of the recA, argF, and rho genes, as well as part of the small-subunit (16S) rRNA gene, from about 50 isolates of human commensal Neisseria species and the pathogenic N. meningitidis and N. gonorrhoeae. Almost all isolates of these species could be assigned to five phylogenetic groups that are found for all genes examined and generally are supported by high bootstrap values. In contrast, the phylogenetic relationships among groups varied according to the gene analyzed with notable incongruences involving N. cinerea and N. lactamica. Further analysis using split decomposition showed that for each gene, including 16S rRNA, the patterns of sequence divergence within N. meningitidis and closely related species were inconsistent with a bifurcating treelike phylogeny and better represented by an interconnected network. These data indicate that the human commensal Neisseria species can be separated into discrete groups of related species but that the relationships both within and among these groups, including those reconstructed using 16S rRNA, have been distorted by interspecies recombination events.  (+info)

Molecular cloning, functional expression and purification of a glucan branching enzyme from Neisseria denitrificans(1). (6/381)

The nucleotide sequence containing the complete structural information for a glucan branching enzyme was isolated from a Neisseria denitrificans genomic library. The gene was expressed in Escherichia coli and the active recombinant protein was purified. The deduced protein of 762 amino acids with a calculated molecular weight of 86313 Da shows similarity to the primary protein sequences of other known glucan branching enzymes. Amino acid sequencing of the isolated protein by Edman degradation confirmed the deduced start codon of the structural gene of the glucan branching enzyme. The purified glucan branching enzyme has a stimulating effect on the Neisseria amylosucrase activity.  (+info)

Purification and characterization of an esterase involved in cellulose acetate degradation by Neisseria sicca SB. (7/381)

An esterase catalyzing the hydrolysis of acetyl ester moieties in cellulose acetate was purified 1,110-fold to electrophoretic homogeneity from the culture supernatant of Neisseria sicca SB, which can assimilate cellulose acetate as the sole carbon and energy source. The purified enzyme was a monomeric protein with a molecular mass of 40 kDa and the isoelectric point was 5.3. The pH and temperature optima of the enzyme were 8.0-8.5 and 45 degrees C. The enzyme catalyzed the hydrolysis of acetyl saccharides, p-nitrophenyl esters of short-chain fatty acids, and was slightly active toward aliphatic and aromatic esters. The K(m) and Vmax for cellulose acetate (degree of substitution, 0.88) and p-nitrophenyl acetate were 0.0162% (716 microM as acetyl content in the polymer) and 36.0 microM, and 66.8 and 39.1 mumol/min/mg, respectively. The enzyme was strongly inhibited by phenylmethylsulfonyl fluoride and diisopropyl fluorophosphate, which indicated that the enzyme was a serine esterase.  (+info)

Rapid micro-carbohydrate test for confirmation of Neisseria gonorrhoeae. (8/381)

A rapid carbohydrate utilization procedure for the confirmation of Neisseria gonorrhoeae and identification of other Neisseria species has been developed. This method utilizes both preformed enzymes, introduced in a heavy inoculum, and enzymes formed by the microorganisms as a result of growth in a small volume of super-enriched medium. Expected carbohydrate reactions were produced by 383 clinical isolates of neisseriae and were clearly visible within 4 h of incubation. The combined use of disposable glass tubes (6 by 50 mm) and microamounts of media (0.05 ml) make this method not only rapid, but also low in cost.  (+info)