The Escherichia coli Ada protein can interact with two distinct determinants in the sigma70 subunit of RNA polymerase according to promoter architecture: identification of the target of Ada activation at the alkA promoter. (1/1370)

The methylated form of the Ada protein (meAda) activates transcription from the Escherichia coli ada, aidB, and alkA promoters with different mechanisms. In this study we identify amino acid substitutions in region 4 of the RNA polymerase subunit sigma70 that affect Ada-activated transcription at alkA. Substitution to alanine of residues K593, K597, and R603 in sigma70 region 4 results in decreased Ada-dependent binding of RNA polymerase to the alkA promoter in vitro and impairs alkA transcription both in vivo and in vitro, suggesting that these residues define a determinant for meAda-sigma70 interaction. In a previous study (P. Landini, J. A. Bown, M. R. Volkert, and S. J. W. Busby, J. Biol. Chem. 273:13307-13312, 1998), we showed that a set of negatively charged amino acids in sigma70 region 4 is involved in meAda-sigma70 interaction at the ada and aidB promoters. However, the alanine substitutions of positively charged residues K593, K597, and R603 do not affect meAda-dependent transcription at ada and aidB. Unlike the sigma70 amino acids involved in the interaction with meAda at the ada and aidB promoters, K593, K597, and R603 are not conserved in sigmaS, an alternative sigma subunit of RNA polymerase mainly expressed during the stationary phase of growth. While meAda is able to promote transcription by the sigmaS form of RNA polymerase (EsigmaS) at ada and aidB, it fails to do so at alkA. We propose that meAda can activate transcription at different promoters by contacting distinct determinants in sigma70 region 4 in a manner dependent on the location of the Ada binding site.  (+info)

Influence of glutathione levels and heat-shock on the steady-state levels of oxidative DNA base modifications in mammalian cells. (2/1370)

The effects of thiols, ascorbic acid and thermal stress on the basal (steady-state) levels of oxidative DNA base modifications were studied. In various types of untreated cultured mammalian cells, the levels of total glutathione were found to be inversely correlated with the levels of DNA base modifications sensitive to the repair endonuclease Fpg protein, which include 8-hydroxyguanine (8-oxoG). A depletion of glutathione by treatment with buthionine sulphoximine increased the steady-state level in AS52 Chinese hamster cells by approximately 50%. However, additional thiols in the culture medium did not reduce the level of Fpg-sensitive base modifications: 0-10 mM N-acetylcysteine had no effect, whereas cysteine ethylester even increased the oxidative DNA damage at concentrations >0.1 mM. Similarly, ascorbic acid (0-20 mM) failed to reduce the steady-state levels. When AS52 cells were grown at elevated temperature (41 degrees C), the steady-state level of the oxidative DNA modifications increased by 40%, in spite of a concomitant 1.6-fold increase of the cellular level of total glutathione. Depletion of glutathione at 41 degrees C nearly doubled the already elevated level of oxidative damage. A constitutive expression of the heat-shock protein Hsp27 in L929 mouse fibrosarcoma cells at 37 degrees C increased the glutathione level by 60%, but had little effect on the level of oxidative DNA damage.  (+info)

Identification of a new uracil-DNA glycosylase family by expression cloning using synthetic inhibitors. (3/1370)

BACKGROUND: The cellular environment exposes DNA to a wide variety of endogenous and exogenous reactive species that can damage DNA, thereby leading to genetic mutations. DNA glycosylases protect the integrity of the genome by catalyzing the first step in the base excision-repair of lesions in DNA. RESULTS: Here, we report a strategy to conduct genome-wide screening for expressed DNA glycosylases, based on their ability to bind to a library of four synthetic inhibitors that target the enzyme's active site. These inhibitors, used in conjunction with the in vitro expression cloning procedure, led to the identification of novel Xenopus and human proteins, xSMUG1 and hSMUG1, respectively, that efficiently excise uracil residues from DNA. Despite a lack of statistically significant overall sequence similarity to the two established classes of uracil-DNA glycosylases, the SMUG1 enzymes contain motifs that are hallmarks of a shared active-site structure and overall protein architecture. The unusual preference of SMUG1 for single-stranded rather than double-stranded DNA suggests a unique biological function in ridding the genome of uracil residues, which are potent endogenous mutagens. CONCLUSIONS: The 'proteomics' approach described here has led to the isolation of a new family of uracil-DNA glycosylases. The three classes of uracil-excising enzymes (SMUG1 being the most recently discovered) represent a striking example of structural and functional conservation in the almost complete absence of sequence conservation.  (+info)

Overlapping specificities of base excision repair, nucleotide excision repair, recombination, and translesion synthesis pathways for DNA base damage in Saccharomyces cerevisiae. (4/1370)

The removal of oxidative damage from Saccharomyces cerevisiae DNA is thought to be conducted primarily through the base excision repair pathway. The Escherichia coli endonuclease III homologs Ntg1p and Ntg2p are S. cerevisiae N-glycosylase-associated apurinic/apyrimidinic (AP) lyases that recognize a wide variety of damaged pyrimidines (H. J. You, R. L. Swanson, and P. W. Doetsch, Biochemistry 37:6033-6040, 1998). The biological relevance of the N-glycosylase-associated AP lyase activity in the repair of abasic sites is not well understood, and the majority of AP sites in vivo are thought to be processed by Apn1p, the major AP endonuclease in yeast. We have found that yeast cells simultaneously lacking Ntg1p, Ntg2p, and Apn1p are hyperrecombinogenic (hyper-rec) and exhibit a mutator phenotype but are not sensitive to the oxidizing agents H2O2 and menadione. The additional disruption of the RAD52 gene in the ntg1 ntg2 apn1 triple mutant confers a high degree of sensitivity to these agents. The hyper-rec and mutator phenotypes of the ntg1 ntg2 apn1 triple mutant are further enhanced by the elimination of the nucleotide excision repair pathway. In addition, removal of either the lesion bypass (Rev3p-dependent) or recombination (Rad52p-dependent) pathway specifically enhances the hyper-rec or mutator phenotype, respectively. These data suggest that multiple pathways with overlapping specificities are involved in the removal of, or tolerance to, spontaneous DNA damage in S. cerevisiae. In addition, the fact that these responses to induced and spontaneous damage depend upon the simultaneous loss of Ntg1p, Ntg2p, and Apn1p suggests a physiological role for the AP lyase activity of Ntg1p and Ntg2p in vivo.  (+info)

The catalytic mechanism of a pyrimidine dimer-specific glycosylase (pdg)/abasic lyase, Chlorella virus-pdg. (5/1370)

The repair of UV light-induced cyclobutane pyrimidine dimers can proceed via the base excision repair pathway, in which the initial step is catalyzed by DNA glycosylase/abasic (AP) lyases. The prototypical enzyme studied for this pathway is endonuclease V from the bacteriophage T4 (T4 bacteriophage pyrimidine dimer glycosylase (T4-pdg)). The first homologue for T4-pdg has been found in a strain of Chlorella virus (strain Paramecium bursaria Chlorella virus-1), which contains a gene that predicts an amino acid sequence homology of 41% with T4-pdg. Because both the structure and critical catalytic residues are known for T4-pdg, homology modeling of the Chlorella virus pyrimidine dimer glycosylase (cv-pdg) predicted that a conserved glutamic acid residue (Glu-23) would be important for catalysis at pyrimidine dimers and abasic sites. Site-directed mutations were constructed at Glu-23 to assess the necessity of a negatively charged residue at that position (Gln-23) and the importance of the length of the negatively charged side chain (Asp-23). E23Q lost glycosylase activity completely but retained low levels of AP lyase activity. In contrast, E23D retained near wild type glycosylase and AP lyase activities on cis-syn dimers but completely lost its activity on the trans-syn II dimer, which is very efficiently cleaved by the wild type cv-pdg. As has been shown for other glyscosylases, the wild type cv-pdg catalyzes the cleavage at dimers or AP sites via formation of an imino intermediate, as evidenced by the ability of the enzyme to be covalently trapped on substrate DNA when the reactions are carried out in the presence of a strong reducing agent; in contrast, E23D was very poorly trapped on cis-syn dimers but was readily trapped on DNA containing AP sites. It is proposed that Glu-23 protonates the sugar ring, so that the imino intermediate can be formed.  (+info)

Pokeweed antiviral protein cleaves double-stranded supercoiled DNA using the same active site required to depurinate rRNA. (6/1370)

Ribosome-inactivating proteins (RIPs) are N-glycosylases that remove a specific adenine from the sarcin/ricin loop of the large rRNA in a manner analogous to N-glycosylases that are involved in DNA repair. Some RIPs have been reported to remove adenines from single-stranded DNA and cleave double-stranded supercoiled DNA. The molecular basis for the activity of RIPs on double-stranded DNA is not known. Pokeweed antiviral protein (PAP), a single-chain RIP from Phytolacca americana, cleaves supercoiled DNA into relaxed and linear forms. Double-stranded DNA treated with PAP contains apurinic/apyrimidinic (AP) sites due to the removal of adenine. Using an active-site mutant of PAP (PAPx) which does not depurinate rRNA, we present evidence that double-stranded DNA treated with PAPx does not contain AP sites and is not cleaved. These results demonstrate for the first time that PAP cleaves supercoiled double-stranded DNA using the same active site that is required for depurination of rRNA.  (+info)

Age-associated increase in 8-oxo-deoxyguanosine glycosylase/AP lyase activity in rat mitochondria. (7/1370)

The mitochondrial theory of aging postulates that organisms age due to the accumulation of DNA damage and mutations in the multiple mitochondrial genomes, leading to mitochondrial dysfunction. Among the wide variety of DNA damage, 8-oxo-deoxyguanosine (8-oxo-dG) has received the most attention due to its mutagenicity and because of the possible correlation between its accumulation and pathological processes like cancer, degenerative diseases and aging. Although still controversial, many studies show that 8-oxo-dG accumulates with age in the mitochondrial (mt) DNA. However, little is known about the processing of this lesion and no study has yet examined whether mtDNA repair changes with age. Here, we report the first study on age-related changes in mtDNA repair, accomplished by assessing the cleavage activity of mitochondrial extracts towards an 8-oxo-dG-containing substrate. In this study, mitochondria obtained from rat heart and liver were used. We find that this enzymatic activity is higher in 12 and 23 month-old rats than in 6 month-old rats, in both liver and heart extracts. These mitochondrial extracts also cleave oligonucleotides containing a U:A mismatch, at the uracil position, reflecting the combined action of mitochondrial uracil DNA glycosylase (mtUDG) and mitochondrial apurinic/apyrimidinic (AP) endonucleases. The mtUDG activity did not change with age in liver mitochondria, but there was a small increase in activity from 6 to 23 months in rat heart extracts, after normalization to citrate synthase activity. Endonuclease G activity, measured by a plasmid relaxation assay, did not show any age-associated change in liver, but there was a significant decrease from 6 to 23 months in heart mitochondria. Our results suggest that the mitochondrial capacity to repair 8-oxo-dG, the main oxidative base damage suggested to accumulate with age in mtDNA, does not decrease, but rather increases with age. The specific increase in 8-oxo-dG endonuclease activity, rather than a general up-regulation of DNA repair in mitochondria, suggests an induction of the 8-oxo-dG-specific repair pathway with age.  (+info)

Flavodoxin: an allosteric inhibitor of AMP nucleosidase from Azotobacter vinelandii. (8/1370)

Flavodoxin, which participates in nitrogen fixation, was found to be a potent allosteric inhibitor of AMP nucleosidase [EC 3.2.2.4] from Azotobacter vinelandii. It inhibited the enzyme by decreasing its affinity for ATP without affecting the maximum velocity. The inhibition constant for flavodoxin was estimated to be 10 muM, which is within the range of physiological concentration in the cells. The concentration of flavodoxin able to alter the activity in vitro suggests that this phenomenon could be of significance in the regulation of flavin biosynthesis in vivo. Flavin mononucleotide (FMN), a prosthetic group of flavodoxin, was also found to act as an allosteric inhibitor. Since no inhibitory action of apo-flavodoxin was observed, it was concluded that the FMN chromophore of the flavodoxin is responsible for the inhibition of the enzyme by this protein.  (+info)