Pretranslational markers of contractile protein expression in human skeletal muscle: effect of limb unloading plus resistance exercise. (1/141)

Previously, it has been shown that the human ground-based model consisting of unilateral limb suspension (ULLS) induces atrophy and reduced strength of the affected quadriceps muscle group. Resistance exercise (RE) involving concentric-eccentric actions, in the face of ULLS, is effective in ameliorating these deficits. The goal of the present study was to determine whether alterations in contractile protein gene expression, e.g., myosin heavy chain and actin, as studied at the pretranslational level, provide molecular markers concerning the deficits that occur in muscle mass/volume during ULLS, as well as its maintenance in response to ULLS plus RE. Muscle biopsies were obtained from the vastus lateralis muscle of 31 middle-aged men and women before and after 5 wk of ULLS, ULLS plus RE, or RE only. The RE paradigm consisted of 12 sessions of 4 sets of 7 concentric-eccentric knee extensions. Our findings show that there were net deficits in total RNA, total mRNA, and actin and myosin heavy chain mRNA levels of expression after ULLS (P < 0.05), whereas these alterations were blunted in the two groups receiving RE. Additional observations involving IGF-I and its associated receptor and binding proteins suggest that RE postures the skeletal muscle for signaling processes that favor a greater anabolic state relative to that observed in the ULLS group. Collectively, these findings suggest that molecular markers of contractile protein gene expression serve as useful subcellular indicators for ascertaining the underlying mechanisms regulating alterations in muscle mass in human subjects in response to altered loading states.  (+info)

Cloning and sequencing of myosin heavy chain isoform cDNAs in golden-mantled ground squirrels: effects of hibernation on mRNA expression. (2/141)

The golden-mantled ground squirrel is a small rodent hibernator that demonstrates unusual myosin heavy chain (MHC) isoform plasticity during several months of torpor, punctuated by bouts of rewarming and shivering thermogenesis. We measured MHC mRNA levels to determine whether pretranslational control mechanisms were responsible for differences in MHC2x protein expression, as we previously observed between active and hibernating ground squirrels. We first cloned cDNA using the 3' rapid amplification of cDNA ends (3' RACE) technique and identified three sequences corresponding to MHC1, MHC2x, and MHC2b. A DNA control fragment was developed to be used in conjunction with a coupled RT-PCR reaction to simultaneously measure MHC mRNA levels for each isoform in the skeletal muscle of ground squirrels. MHC mRNA and protein expression were strongly correlated, and type IIx and IIb mRNA levels were significantly different between active and hibernating ground squirrels. Pretranslational control of MHC protein is apparently an important process during hibernation, although the exact stimulus is not known. The techniques presented can be used to obtain MHC cDNA sequences and to measure mRNA expression in many vertebrate groups.  (+info)

Nuclear factor-kappaB induced by doxorubicin is deficient in phosphorylation and acetylation and represses nuclear factor-kappaB-dependent transcription in cancer cells. (3/141)

The primary goal of chemotherapy is to cause cancer cell death. However, a side effect of many commonly used chemotherapeutic drugs is the activation of nuclear factor-kappaB (NF-kappaB), a potent inducer of antiapoptotic genes, which may blunt the therapeutic efficacy of these compounds. We have assessed the effect of doxorubicin, an anthracycline in widespread clinical use, on NF-kappaB activation and expression of antiapoptotic genes in breast cancer cells. We show that doxorubicin treatment activates NF-kappaB signaling and produces NF-kappaB complexes that are competent for NF-kappaB binding in vitro. Surprisingly, these NF-kappaB complexes suppress, rather than activate, constitutive- and cytokine-induced NF-kappaB-dependent transcription. We show that doxorubicin treatment produces RelA, which is deficient in phosphorylation and acetylation and which blocks NF-kappaB signaling in a histone deacetylase-independent manner, and we show that NF-kappaB activated by doxorubicin does not remain stably bound to kappaB elements in vivo. Together these data show that NF-kappaB signaling induced by doxorubicin reduces expression of NF-kappaB-dependent genes in cancer cells.  (+info)

Functional dissection of sRNA translational regulators by nonhomologous random recombination and in vivo selection. (4/141)

Small nontranslated RNAs (sRNAs) regulate a variety of biological processes. DsrA and OxyS are two E. coli sRNAs that regulate the translation of rpoS, which encodes a protein sigma factor. Due to their structural complexity, the functional dissection of sRNAs solely by designing and assaying mutants can be challenging. Here, we present a complementary approach to the study of functional RNAs, in which highly diversified RNA libraries are generated by nonhomologous random recombination (NRR) and processed efficiently by in vivo selections that link RNA activities to cell survival. When applied to DsrA and OxyS, this approach rapidly identified essential and nonessential regions of both sRNAs. Resulting hypotheses about DsrA and OxyS structure-function relationships were tested and further refined experimentally. Our findings demonstrate an efficient, unbiased approach to the functional dissection of nucleic acids.  (+info)

En masse analysis of nascent translation using microarrays. (5/141)

We report a robust method for studying en masse changes in translation using cDNA arrays. The relative distribution of messenger RNAs (mRNAs) along polysome gradients was monitored by performing cDNA array analysis of each gradient fraction and quantifying the mRNA translational status by regression analysis. Using this strategy to study human carcinoma cells exposed to short-wavelength ultraviolet light (UVC), we identified a subset of 17 translationally induced mRNAs and a subset of 69 translationally repressed mRNAs following UVC irradiation. We describe an effective approach for globally investigating changes in protein biosynthesis.  (+info)

Paracoccidioides brasiliensis translation and protein fate machineries revealed by functional genome analysis. (6/141)

The translational and post-translational modification machineries of Paracoccidioides brasiliensis were assessed by means of comparative analyses of PbAESTs (P. brasiliensis assembled expressed sequence tags) with sequences deposited on different databases. Of the 79 sequences corresponding to cytosolic ribosomal proteins, we were able to find 78 in the P. brasiliensis transcriptome. Nineteen of the 27 Saccharomyces cerevisiae genes related to translation initiation were also found. All eukaryotic elongation factors were detected in P. brasiliensis transcriptome, with eEF1A as one of the most expressed genes. Translation termination is performed, in eukaryotes, by factors 1 and 3 (eRF1, eRF3). In P. brasiliensis transcriptome it was possible to identify eRF3, but not eRF1. Sixteen PbAESTs showing aminoacyl-tRNA synthetase-predicted activities were found in our analyses, but no cysteinyl-, leucyl-, asparagyl- and arginyl-tRNA synthetases were detected. Among the mitochondrial ribosomal proteins, we have found 20 and 18 orthologs to S. cerevisiae large and small ribosomal subunit proteins, respectively. We have also found three PbAESTs similar to Neurospora crassa mitochondrial ribosomal genes, with no similarity with S. cerevisiae genes. Although orthologs to S. cerevisiae mitochondrial EF-Tu, EF-G and RF1 have been found in P. brasiliensis transcriptome, no sequences corresponding to functional EF-Ts were detected. In addition, 64 and 28 PbAESTs associated to protein modification and degradation, respectively, were found. These results suggest that these machineries are well conserved in P. brasiliensis, when compared to other organisms.  (+info)

Controlling N-linked glycan site occupancy. (7/141)

N-linked glycosylation, a common co-translational modification in eukaryotic cells, involves the transfer of a lipid-linked oligosaccharide onto asparagine residues in a tripeptide sequon on a nascent protein in the lumen of the endoplasmic reticulum. The attachment of an oligosaccharide unit to the polypeptide at the site of occupancy can enhance solubility, improve folding, facilitate secretion, modulate antigenicity, and increase in vivo half-life of the glycoprotein. A number of proteins exhibit variable site occupancy. The efficiency of protein N-glycosylation is dependent on the kinetics of the individual steps in the biosynthesis of the dolichol-linked oligosaccharide and the transfer of the oligosaccharide from the lipid donor substrate to the nascent polypeptide. In this review, we will discuss the role of N-linked glycan site occupancy and give an overview of the possible limitations associated with variable site occupancy. The characterization of the dolichol pyrophosphate biosynthetic pathway and the recent identification of potential rate limiting enzymes in yeast and mammalian cells has made it possible to investigate their role in site occupancy. Genetic and biochemical characterization of oligosaccharide transferase (OST) complex in yeast and mammalian cells have demonstrated the importance of specific OST subunits in protein N-glycosylation. In addition, insights into the location and residues in and around the acceptor tripeptide sequon suggest an influence on N-glycan site occupancy. Insights from these characterizations are being used to elucidate methodologies to control N-glycosylation site heterogeneity.  (+info)

ST6GalNAc I expression in MDA-MB-231 breast cancer cells greatly modifies their O-glycosylation pattern and enhances their tumourigenicity. (8/141)

Sialyl-Tn is a carbohydrate antigen overexpressed in several epithelial cancers, including breast cancer, and usually associated with poor prognosis. Sialyl-Tn is synthesized by a CMP-Neu5Ac:GalNAcalpha2,6-sialyltransferase: CMP-Neu5Ac: R-GalNAcalpha1-O-Ser/Thr alpha2,6-sialyltransferase (EC 2.4.99.3) (ST6GalNAc I), which transfers a sialic acid residue in alpha2,6-linkage to the GalNAcalpha1-O-Ser/Thr structure. However, established breast cancer cell lines express neither ST6GalNAc I nor sialyl-Tn. We have previously shown that stable transfection of MDA-MB-231, a human breast cancer cell line, with ST6GalNAc I cDNA induces sialyl-Tn antigen (STn) expression. We report here the modifications of the O-glycosylation pattern of a MUC1-related recombinant protein secreted by MDA-MB-231 sialyl-Tn positive cells. We also show that sialyl-Tn expression and concomitant changes in the overall O-glycan profiles induce a decrease of adhesion and an increase of migration of MDA-MB-231. Moreover, STn positive clones exhibit an increased tumour growth in severe combined immunodeficiency (SCID) mice. These observations suggest that modification of the O-glycosylation pattern induced by ST6GalNAc I expression are sufficient to enhance the tumourigenicity of MDA-MB-231 breast cancer cells.  (+info)