Hidden genetic variability within electromorphs in finite populations. (1/9350)

The amount of hidden genetic variability within electromorphs in finite populations is studied by using the infinite site model and stepwise mutation model simultaneously. A formula is developed for the bivariate probability generating function for the number of codon differences and the number of electromorph state differences between two randomly chosen cistrons. Using this formula, the distribution as well as the mean and variance of the number of codon differences between two identical or nonidentical electromorphs are studied. The distribution of the number of codon differences between two randomly chosen identical electromorphs is similar to the geometric distribution but more leptokurtic. Studies are also made on the number of codon differences between two electromorphs chosen at random one from each of two populations which have been separated for an arbitrary number of generations. It is shown that the amount of hidden genetic variability is very large if the product of effective population size and mutation rate is large.  (+info)

The Lewontin and Krakauer test on quantitative characters. (2/9350)

It is shown that LEWONTIN and KRAKAUER's test could also be applied to quantitative characters that do not show important dominance and epistatic genetic variances. The design of experiments for this purpose and the error of the estimation of F are discussed.  (+info)

Mapping of the homothallic genes, HM alpha and HMa, in Saccharomyces yeasts. (3/9350)

Two of the three homothallic genes, HM alpha and HMa, showed direct linkage to the mating-type locus at approximately 73 and 98 strans (57 and 65 centimorgans [cM], respectively, whereas, the other, HO, showed no linkage to 25 standard markers distributed over 17 chromosomes including the mating-type locus. To determine whether the HM alpha and HMa loci located on the left or right side of the mating-type locus, equations for three factor analysis of three linked genes were derived. Tetrad data were collected and were compared with expected values by chi 2 statistics. Calculations indicated that the HM alpha gene is probably located on the right arm at 95 strans (65 cM) from the centromere and the HMa locus at approximately 90 strans (64 cM) on the left arm of chromosome III.  (+info)

Somatic recording of GABAergic autoreceptor current in cerebellar stellate and basket cells. (4/9350)

Patch-clamp recordings were performed from stellate and basket cells in rat cerebellar slices. Under somatic voltage clamp, short depolarizing pulses were applied to elicit action potentials in the axon. After the action potential, a bicuculline- and Cd2+-sensitive current transient was observed. A similar response was obtained when eliciting axonal firing by extracellular stimulation. With an isotonic internal Cl- solution, the peak amplitude of this current varied linearly with the holding potential, yielding an extrapolated reversal potential of -20 to 0 mV. Unlike synaptic or autaptic GABAergic currents obtained in the same preparation, the current transient had a slow rise-time and a low variability between trials. This current was blocked when 10 mM BAPTA was included in the recording solution. In some experiments, the current transient elicited axonal action potentials. The current transient was reliably observed in animals aged 12-15 d, with a mean amplitude of 82 pA at -70 mV, but was small and rare in the age group 29-49 d. Numerical simulations could account for all properties of the current transient by assuming that an action potential activates a distributed GABAergic conductance in the axon. The actual conductance is probably restricted to release sites, with an estimated mean presynaptic current response of 10 pA per site (-70 mV, age 12-15 d). We conclude that in developing rats, stellate and basket cell axons have a high density of GABAergic autoreceptors and that a sizable fraction of the corresponding current can be measured from the soma.  (+info)

Transport of solutes through cartilage: permeability to large molecules. (5/9350)

A review of the transport of solutes through articular cartilage is given, with special reference to the effect of variations in matrix composition. Some physiological implications of our findings are discussed. Also, results of an experimental study of the permeability of articular cartilage to large globular proteins are presented. Because of the very low partition coefficients of large solutes between cartilage and an external solution new experimental techniques had to be devised, particularly for the study of diffusion. The partition coefficients of solutes were found to decrease very steeply with increase in size, up to serum albumin. There was, however, no further decrease for IGG. The diffusion coefficient of serum albumin in cartilage was relatively high (one quarter of the value in aqueous solution). These two facts taken together suggest that there may be a very small fraction of relatively large pores in cartilage through which the transport of large molecules is taking place. The permeability of cartilage to large molecules is extremely sensitive to variations in the glycosaminoglycan content: for a threefold increase in the latter there is a hundredfold decrease in the partition coefficient. For cartilage of fixed charge density around 0-19 m-equiv/g, there is no penetration at all of globular proteins of size equal to or larger than serum albumin.  (+info)

Teaching coin summation to the mentally retarded. (6/9350)

A procedure to teach four mild and moderately retarded persons to sum the value of coin combinations was tested. Subjects were first taught to count a single target coin, and then to sum that coin in combination with coins previously trained. Five American coins and various combinations were trained. Modelling, modelling with subject participation, and independent counting by the subject constituted the training sequence. The subjects improved from a mean pretest score of 29% to 92% correct at posttest. A four-week followup score showed a mean of 79% correct. A multiple-baseline design suggested that improvement in coin-counting performance occurred only after the coin was trained. The results indicate that this procedure has potential for teaching the retarded to sum combinations of coinds in 5 to 6 hr of instruction.  (+info)

The changing criterion design. (7/9350)

This article describes and illustrates with two case studies a relatively novel form of the multiple-baseline design called the changing criterion design. It also presents the design's formal requirements, and suggests target behaviors and circumstances for which the design might be useful.  (+info)

Regulation of AMP deaminase from chicken erythrocytes. A kinetic study of the allosteric interactions. (8/9350)

The allosteric properties of AMP deaminase [EC 3.5.4.6] from chicken erythrocytes have been qualitatively and quantitatively accounted for by the concerted transition theory of Monod et al., on the assumption that this enzyme has different numbers of binding sites for each ligand. Theoretical curves yield a satisfactory fit for all experimental saturation functions with respect to activation by alkali metals and inhibition by Pi, assuming that the numbers of binding sites for AMP, alkali metals, and Pi are 4, 2, and 4, respectively. The enzyme was inhibited by concentrations of ATP and GTP below 0.1 and 0.25 mM, respectively, whereas activation of the enzyme was observed at ATP and GTP concentrations above 0.4 and 1.5 mM, respectively. These unusual kinetics with respect to ATP and GTP could be also accounted for by assuming 2 inhibitory and 4 activating sites for each ligand.  (+info)